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APPLICATION OF ULTRA-STABLE OSCILLATORS TO 
ONE -WAY RANGING SYSTEMS 

1. INTRODUCTION 

Great advances have been made in recent years  in the field of ultra- 

stable oscillators. 

been greatly enhanced at  the same time that flexibility and reliability have been 

improved. Pertinent examples of such ultra -stable oscillators a r e  some 

hydrogen-maser oscillators recently acquired and evaluated by GSFC, and 

cesium beam primary standards available as commercial products. 

Attainable stabilities, both "long1' and "short term, " have 

The availability of these oscillators naturally ra i ses  the possibility of 

utilizing them in the design of space-vehicle tracking systems, with the objec- 

tives of improving system accuracy and/or greatly reducing system complexity. 

One intriguing possibility is to turn away from coherent two-way tracking 

techniques (involving transponders) i n  favor of the simpler but heretofore l e s s  

precise (noncoherent) one-way tracking techniques. 

below. 

This possibility is explored 

The objective of the study documented in P a r t  I of this report, a s  de- 

fined in the Task Statement, is: 

Determine the feasibility of designing a one-way o r  passive 
ranging system given the fact that a spacecraft oscillator is 
highly stable and i t s  frequency is well known. The analysis 
should take into account all possible system e r r o r s  such a s  
propagation anomalies, small drifts in system oscillators, 
etc. , and evaluate quantitatively expected system performance. 

In Sec. 2 the basic techniques of trajectory measurement in a one-way 

tracking system are described; then i n  Sec. 3 the effects of lack of coherence 

between transmitter and receiver on system operation and accuracy a r e  analyze( 

and discussed. It is found that in many applications such as deep-spacetracking 

coherent doppler demodulation is not attained because of the oscillator instabiliv 

incurred during the elapsed time between transmission and reception. 

1 
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Thus, one-way tracking suffers no disadvantage in this respect in comparison 

with coherent two-way tracking. 

are quite sensitive to geometric dilution of precision (GDOP). 

are devoted to the exploration of these geometrical problems. 

to the feasibility of precision one-way tracking systems are drawn in Sec. 6 ,  

and suggestions are offered concerning the development of such systems. 

On the other hand, one-way tracking techniques 

Sections 4 and 5 

Conclusions as 

2 
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2. ONE -WAY RANGING TECHNIQUES 

It is possible to determine the trajectory of a vehicle by performin 

measurements a t  ground sites on signals which originate at the vehicle, Si 

transmissions from the ground sites to the vehicle a re  not required, this r a  

technique is called one-way or passive ranging. 

A possible one-way ranging technique is demonstrated with the aid 

Fig. 1. The vehicle is located at P at time t = 0, and there are receiving SI 

tions at  A, B, C, and D. Assume that the vehicle radiates a single event s 

as an impulse at  t = 0. This is received at A at  t = r /c, at B at t = r ic ,  

where c is the speed of light. The absolute time of occurrence of the impu 

transmission is not known at the ground s i tes  so the ranges, ra, rb, . . . , c 

be determined directly. However, the differences in time of arr ival  a t  the 

ground s i tes  can be determined exactly with the aid of a precise reference I 

distribution system. The timing system provides synchronized clocks a t  e: 

of the ground sites. In this way the difference ranges, r -rb, r b - r  c"" 

can be determined uniquely. Note that four stations produce three independ 

range differences. Each range difference defines a hyperboloid of revolutic 

For example, the range difference r - r defines a hyperboloid with foci ai 

and B, and the difference of distances of any point on the hyperboloid from 

foci is just r - r Thus, three surfaces of revolution are generated from 

range difference data obtained from four receiving stations, and these surf; 

intersect at P, which is the target position. 

a a  b a  

a 

a b  

a b' 

It is not reasonable to assume that the vehicle wi l l  transmit just 01 

A per1 

In fact, a E 
impulse in a practical application of the one-way ranging technique. 

waveform, such as a periodic pulse train, is more convenient. 

CW c a r r i e r  can be used. 

3 
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7 
R-2908 

Fig. 1 One-way Ranging Utilizing a Single Event. 

When a periodic pulse train is transmitted, the range difference deter-  

minations become ambiguous. A s  a result, the determination of target position 

P, is ambiguous and some a priori knowledge of target position is necessary to 

resolve the ambiguity. Similarly, a CW transmission produces highly ambiguou 

data, For the case of pulsed signals, the ambiguity a r i ses  from the inability to 

distinguish one pulse from another at the ground sites. Analogously, for  CW 

transmission, the ambiguity arises from the inability to distinguish one zero 

crossing of the CW sine wave from another. 

severe that resolution with the aid of a priori  information is not practical. 

The ambiguity thus produced is so 

A one-way ranging technique is available which employs additional 

stations to combat this ambiguity problem. 

figuration shown i n  Fig. 2. 

ously, note that r - r can be determined unambiguously. This is the change a1 a2 

Consider the two -dimensional con- 

Although ral - rbl can only be determined ambigu- 

4 
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e 

* 

Vehicle 
Tr aiec t o r y .fl . \'\ .. 

I \ 

R-2907 A B C D X  

Fig. 2 One-way Ranging Utilizing Doppler Count 
(two dimensional). 

in range due to target motion observed at A by counting doppler cycles of t 

CW sine wave. Similarly, the change in range observed at B, C, and D, ci 

measured. With this data four equations can be written with four unknowns 

These are the coordinates of Q, and Q,. The tec-hnique is extended for app 

tion in three dimensions by utilizing six stations. Clearly, this technique c 

works with moving vehicles. 

Other techniques a r e  available which utilize one-way transmission 

determine target position. For example, i f  the vehicle is in free-fall o r  0 1  

a great deal is then known about its trajectory. A'priori advantage can be 1 

of this extra  information to either reduce the number of observations requii 

o r  to enhance the accuracy of the trajectory determination. Another exam€ 

the use of multiple-tone modulation of the C W  carrier to generate widely sy 

periodic events and thus greatly reduce the range ambiguity. The e r r o r s  

5 
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incurred with the four techniques mentioned above will be considered in the 

following sections. 

Sec. 3 in order to demonstrate how oscillator instability can result  in loss of 

coherence, and thus eliminate the advantage of coherence expected in a two-way 

system under certain conditions. 

But first ,  a -. two-way CW doppler system is considered in 

6 
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3 .  DOPPLER MEASUREMENT ERROR DUE TO OSCILLATOR INSTABILITY:" 

In this section, the effect on doppler measurement accuracy of oscilla- 

to r  instability is determined. Then, a s  an example, the doppler e r r o r  due to 

the instability of a cesium beam ultrastable oscillator in a monostatic system 

is determined. 

It is found that the short-term instability contributes more signifi- 

cantly to the doppler e r r o r  than the long-term instability. The validity of this 

conclusion is a function of the noise bandwidth of the receiver .  In the example 

below, a noise bandwidth of 2 kHz is assumed. With noise bandwidths on this 

order ,  the long-term stability enhancement of the cesium resonator has little 

effect on the doppler e r r o r .  Similar accuracy could be obtained using the 

quartz oscillator only. The cesium beam resonator improves the stability of the 

source when the averaging time is greater than 100 s. Thus its relative contribution 

is important only when the noise bandwidth of the receiver is extremely narrow. 

The system assumed f o r  analysis below is monostatic. That is, a 

stabie reference is used to generate the transmitted signal. This signal is 

transponded (without distortion) a t  the vehicle and returned to a receiver which 

is contiguous with the transmitter.  The same stable reference is used to de- 

tect the doppler data. During the round trip, the short-term instability of the 

stable reference causes it to shift frequency slightly. It is found that i f  the 

round-trip time is short enough, the instability component on the returning 

signal is correlated with the stable reference's instability component and, thus, 

causes little e r r o r .  On the other hand, i f  the round-trip t ime is long, the in- 

stability component on the return is uncorrelated with the instability component 

of the reference.  In that case,  a separate stable oscillator of the same quality 

could be used to detect the doppler data at the receiver without any decrease 

in doppler accuracy. 

* 
The material  of this section is based on work performed under Contract 
DA-31-124-ARO-D-393 wi th  the U.S. Army White Sands Miss i le  Range. 
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It is concluded that a one-way doppler measurement will be a s  ac - 
curate as a two-way doppler measurement provided that 

1. 

2 .  

the target is at  long-range fo r  a given data ra te ,  

the long-term instability of the oscillators does 
not contribute significant e r r o r  (say, l e s s  than 
the e r r o r  due to uncertainty in the speed of 
light), and 

the receiver noise-bandwidth is greater  than 
100 H z .  

3 .  

The e r r o r  in doppler measurement due to oscillator instability is 

derived and discussed below. The measurement under consideration is the 

time required, A t ,  for  a given change in range, A r ;  o r ,  alternatively, the 

change in range in  a given t ime. In other words the determined parameter 

is the average velocity during the measurement interval not the instantaneous 

velocity. 

3 . 1  Analytical Model 

The system to be analyzed is shown i n  Fig.  3 .  The transmitted 

c a r r i e r  is generated by multiplying up the output of a 5 MHz stable source.  

The signal received at the transponder is at the transmitting c a r r i e r  f r e -  

quency, f , plus one-way doppler, f 
0 d '  

k times its input frequency, where it is assumed that k = 991100 for the sake 

of example. 

This is mixed down to an I F  by beating the received signal with a sample of 

the transmitted carrier. The signal in the IF amplifier is at (1 - k) f = 100 

MHz and is tracked by a PLL with noise bandwidth of approximately 2 kHz. 

Finally, the offset frequency is removed (or partially removed) at the output 

of the PLL and a filtered signal which contains the doppler data is sent to a 

cycle counting measurement device. There, the number of cycles in a given 

The transponder output frequency is 

The received downlink signal is then approximately kf + 2 k f d .  
0 

0 

8 
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Transmitter Transponder 

x 2000 9 Carrier 
Tra c ke r 

Stable - x 20 Cycle Velocity 
5 MHz - 
Source Doppler. Counter 

Signal . 
R - 2581 Startt tStoD 

Averaging 
Ti me 

Fig. 3 Analytical Model. 

number of seconds o r  the number of seconds for a given number of cycles is 

measured to determine the average velocity during the measurement interval. 

There are many possible sources of e r r o r  inherent to the measure- 

ment technique just  described, such as receiver noise, vehicle dynamics, 

quantizing e r ro r s ,  etc. But, the only one considered here  is caused by a slight 

change of frequency (or phase) of the stable source during the round-trip time 

to the transponder and back. If, for example, the stable frequency changes by 

Of cycles during the transit time, the IF becomes 100 MHz + '2 k fd + Af. 

Obviously, such a change in frequency contributes directly to doppler e r ro r .  

That is,the velocity e r r o r  is given by 

c Af Av = 2 f  
0 

9 
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This type of e r ro r  generation should not be confused with the case in which the 

transmitted frequency is constant but in e r r o r  by Af H z .  Then the resulting 

velocity e r r o r  is approximately 
::c 

(2) 

Consider, for example, a Af of 1 Hz at X-band. The resulting velocity e r r o r  

of the type described by Eq. (1) is 0.05 f t / s ec  . On the other hand, a constant 

offset of 1 H z  at x-band yields an e r r o r  given by Eq. (2)  which is on the order  
- 10 of v. 10 

ity e r r o r  is 3 . 5  x 10 f t / sec .  I t  is clear,  then, that random changes in the 

stable oscillator frequency during the round-trip time to the target are much 

more important than constant offsets of the oscillator frequency. For  this 

reason, the short-term stability of the stable source must be examined ca re -  

fully to determine its effect on doppler accuracy. 

. Assuming a maximum velocity of, say, 35,000 f t / sec ,  the veloc- 
-6 

3 . 2  Analysis of E r ro r  

With reference to Fig.  3, the X-band output of the stable source has 

a phase given by 27rfot + b(t) a t  time t, where b(t) represents the phase fluc- 

tuations due to oscillator instability. Furthermore,  the phase of the received 

signal at time t is given by 2 s k f  (t -7) + k b ( t  -7). The round-trip time to the 

target is denoted by T and it is a function of time, i. e . ,  the target is moving. 

The input phase to the IF amplifier is 

0 

= 2s * l00MHz.t + 2 r k f  7 + b(t) - kb(t  - 7 )  (3) 0 

.b -I. 

Uncertainty in the speed of light, Ac, causes a s imilar  e r r o r ,  i. e . ,  
av = V A C I C .  

10 
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A short  time, A t ,  later the input phase has the form, 

2nf. (t + A t )  = 2n -1OOMHz (t  + A t )  + 2nkfo (7  + AT) 
If 

+- b(t + A t )  - k b  (t + A t  - T - AT) (4) 

where A T  is the change in delay during the interval A t  caused by target motion. 

The inputs to the cycle counter at times t and t + At a r e  similar to the IFs ig -  

nals of Eqs. (3)and(4) except that the PLL narrows the noise bandwidth and the 

100 MHz offset is removed. The cycle counter accumulates the phase of its 

input signal over the interval A t .  

t + At. 

That is, it is started at  t and stopped at 

Thus its contents at time t + A t  is just 

Ad) = 2 n k f  AT + b(t + A t )  - kb(t  + A t  - - AT) 
0 

If the system is the type which determines the change in range in a given time, 

then, the average velocity measured is 

A r  - C A b  - 
v = - -  

m A t  4nf Atk 
0 

r b (t + At) - kb(t+ At - T - AT) - b(t) + k b  (t - T)] 
- C A T  + C - -  

2At 4afoAtk 

(6 ) 

The second The first te rm on the right of Eq. (6) is exactly the desired output. 

t e rm on the right is the e r r o r  in doppler measurement due to  oscillator in- 

stability. Since k = 1, the mean- square velocity e r r o r  is approximated by 

11 
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Without any loss  of generality, the t ime scale can be shifted in Eq. (7) to yield 

a more symmetric form. Replacing t by t - At/2 + (7 +  AT)/^ in Eq. (7) results 

in 

0 

The second term in brackets of Eq. (8) is difficult to evaluate. The procedure 

is a s  follows: F i rs t ,  the sum of the phase functions in Eq. (8) is interpreted 

as the result of a convolution of b(t) with some function, g(t). 
. 

That is, 
00. 

rb(t  L - t,) - b<t - t2) - b(t-  t3) - b(t - t4)] = b (P) g (t - 1-0 dp (9) 
-00 

where 

A t  T + AT t = - -  +- A t  - -  r +  AT 
t l = - -  2 2 ’ 2  2 2 

7 - AT - -  
2 

= -  At - - - At + r + AT 
t3 2 2 J t 4  2 

Assume, for the moment,that g(P) has the form shown in Fig. 4a. 

has the form shown in Fig. 4b. 

out m .  

Then, g(t-p) 

The convolution of Eq. (9) can now be carried 

b(P) g ( t  - P)dP= - b(t - P2) + b(t - pl) + b ( t +  P4) -b ( t+P3)  (10) 
-0c 

Equation (9), is valid when 

A t  r + A T  + -  - At r +  AT 
2 2 c12 = t2 = - -  2 2 

- - --- P1 = tl 

A t  7 - AT 
2 2 

- - - - -  A t  T +  AT +- P = - t 4 -  P 3 = - t  3 = - -  2 2 4 

12 

- ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 



“P1 +-P2 

‘P4 ‘P3 

‘+P3 t+P4 

Fig. 4a g(P) as a Function of p. 

Fig. 4b g(t-P) as  a Function of p. 

The function, g(t), is plotted in Fig. 5. Equation (8) can now be expressed in  

t e rms  of b(t) and g(t) using Eq. (9) as  follows 
. 

It is recognized that the right-hand term of Eq. (11) is the mean-square valde oi 

the response of some linear system with impulse response g(t) to a stochastic 

13 
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Fig. 5 g(t) a s  a Function of t. 

input b(t) .  The autocorrelation of the l inear system's response is given 

00 00 

Where R ( 7 )  is the  autocorrelation of the frequency fluctuations, and the mean- 

square of the response is R(0). The power spectral  density of R(T) is 
b 

M 

-00 
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. 
where S' (a) is the power spectral density of b(t) and G(w) is the transform 

of g(t). Transforming back into the time domain and remembering that R(0) 

is the mean-square of the response, 

cb 

and, finally, 

By inspection of Fig. 5, the power spectrum of g(t) is 

At this point it is recalled that the doppler data is filtered in a PLL. 

effect of the PLL is included by passing the linear system's response of 

Eq. (1 0), through an additional filter with impulse response, h(t), andtransfer 

function H(w) .  

PLL. Equation (16) becomes 

The 

Thus G(o) is cascaded with H(o), the transfer function of the 

For simplicity, the characteristic of the PLL is approximated by an ideal 

lowpass f i l ter  with cutoff at  2kHz. That is, 

1 5  
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The highest frequency of interest is w/2n = 2kHz. When the target is moving 
a t  its assumed maximum velocity, 35,000 f t / sec ,  the maximum change in the 

round-trip time during a measurement interval is given by 

2 v  max At - 2 ~ 3 . 5 ~ 1 0  4 x1O-I 
- - 2 Ar - - -  - 

C C 9 
10 

A 7max 

= 7psec 

where it is assumed that the maximum duration of a measurement interval, 

A t ,  is 0 . 1  sec. 

throughout the region of interest. 

Then, the phase, w A 7 / 2 ,  in Eq. (17), is negligibly small  

Its highest value is 

OAT 2 ~ 2 x 1 0  3 ~ 7 x 1 0  - 6  = 4 4 m r a d  - -  - 
2 2 

Thus, 

2 1 6  2 2 sin * sin - I G ( w ) I  w - 2 2 w 

This means that the doppler e r r o r  due to oscillator instability is essentially 

independent of target velocity. Substituting Eq. (221, into Eq. (1 9) , yields 

Using Eq. (23), the velocity e r r o r  as a function of A t  and 7 can be found pro- 

vided that the power spectral density of oscillator frequency fluctuations is 

known. 

associated S' (0) is determined. 

In the next section a high quality oscillator is investigated and its 

b 
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I 3 - 3  

Note 1: Al l  data based on at least 100 samples. 

Note 2: Figures quoted by the manufacturer a r e  
worst case. Therefore, appropriate data for  thi s 
analysis a r e  somewhat reduced, e.g. , max. rms.  
fractional frequency deviation fo r  1 ms averag- 
ing time is 8 x 10-10, the value used in the anal- 
ysis  below is 6 X 10-l'. l 

Oscillator Frequency Fluctuations 

I -  
I - . .  

The particular oscillator to be analyzed is s imilar  to a Hewlett- 

Packard 5060A Cesium Beam Frequency Standard. Table I shows those 

specifications of the oscillator which are necessary to determine the power 

density spectrum of its frequency fluctuations. 

Table I 

OSCILLATOR SPECIFICATIONS 

1. Short Term Stability (Quartz Oscillator Effects) 

Ave. Time rms.  Fractional Freq. Deviation 

1 m s  6 x 10-l' 
1.2 x 10 -10 

1.5 X 10 -11 

1 sec  1.5 x 10-l1 
1.5 X 10 - 11 

10 ms 

100 ms 

10 s e c  

2. Long Term Stability (Associated with Cesium Beam Operation) 

Ave. Time rms .  Fractional Freq, Deviation 

100 sec 1 x 10-l1 

3. Oscillator Output Fil ter Bandwidth = 125 Hz. 

17 I 
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The oscillator output power density spectrum S' (a) is composed b out 
of the power density of the cesium reference, S and the quartz oscil- 

lator s' (a) osc with appropriate filtering2J3 as shown in Fig. 6. The ref- 
b 

6 

Fig. 6 Equivalent Model of a Stable Source. 

3 
erence power density is assumed to be flat , i. e . ,  S' (w) ref = K 

square fractional frequency deviation of the reference resonator is approxi- 

mated by 

The mean- b . r' 

3 

when T is large. 

it is found that Kr = 40 (rad/sec) 

dominates in  the expressions of s*( .~)  
and lowpass filters of Fig. 6, and down to dc. 

Substituting from Table I that Af/f = 1 X 10-l' when T= 100 sec 
2 per Hz when f = 10 GHz. This factor pre- 

below the cross-over point of the higl + out 

18 
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Immediately above the cross -over point the factor which predomi- 

nates is associated with the "flicker" noise, K / f, of the quartz oscillator. 

K can be found from 
f 2 

f 

2 
2Kf 1.04 + - I n  (3 =-[ 47T 3 2  f 2 (33 

where T = measurement interval. 

under examination here,  is approximately 200. 

fractional frequency stability to  be substituted into Eq. (25)  is less than or 

equal t o  1 . 5  X 10 

become independent of the averaging time, 7, and such a phenomenon can only 

be caused by l / f  noise . Thus, it is  found that K / o x  0.4/0 for the oscillator 

under consider ation. 

In particular, T/T, for the oscillator data 

The appropriate value of the 

-1 1 . This is the level where the r m s  frequency fluctuations 

4 
f 

The l l f  contribution of the quartz oscillator is equal to the white 

noise density of the reference a t  

0.01 rad/ sec K f  0.4 
40 K 

a = - = - =  

r 

It is assumed, then, that the cross-over of the high and lowpass filters of 

Fig. 6 is in the vicinity of 0.01 rad/ sec so that the combined S o  + 

stant a t  40 from w = 0 to w = 0.01 then decreases with value 0.410 above 

w = 0.01 until the next te rm becomes predominant. 

is con- 

Perturbation noise contributions to the frequency fluctuations of an 

oscillator can generate the next important te rm but these a r e  sometimes 

masked by its I /  f noise . 
Table I shows that this is the case for  this oscillator , so the next te rm of 

2 
An examination of the short  t e rm stability data of 

4 

- - importance comes from additive noise. This te rm has the form S i  
2 K w , and it  predominates from the point where i t s  contribution is equal to 

the I/ f noise contribution out to  w = 00. Somewhere in this region the output 
a 
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bandpass filter has a roll-off. It is assumed that the lowpass equivalent of 

this filter is 
2 

2 

2 2  
2 (1 25n) 

I H b ) I  = 
( 1 2 5 ~ )  +o 

so  that the output power density has  the form 

2 

( 1 2 5 ~ )  +o 

2 ( 1 2 5 ~ )  
2 2  w K  o (W)out a 

in this region. The mean-square fractional frequency deviation is given 
by2*3.5 

Equation (29)  can be approximated by 

m 
2 2  

4 J Ka(125n) s in  o T / 2  sin - do + -  
125n 

(?)% 2 1  - -  [:I K 2 4 2 WT 
125n 

(UT/  2,2 - 
2 2  a 2 n T 4n f 0 

( 3  0) 
-1 0 

Upon substitution into Eq.(30) of data from Table I (e. g . ,  A f /  f = 6 X 10 
-1 0 -5 

7 = 1 m s  o r  A f / f  5 1.2 X 10 . 
at  

at 7 = 10ms)  it is found that K FJ 1 0  a 

The components in the power density spectrum of the frequency 

fluctuations of the oscillator under consideration are summarized in Table II 
below. 

20 
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Table 11 

POWER DENSITY SPECTRUM O F  FREQUENCY FLUCTUATIONS 

Si (w) -  ( r r -  s e c r p e r  Hz Frequency Range - Physical Origin 

40 0 w < 0.01 Cesium Resonator 
Noise 

0.4/w 0.01 s a  < 34.3 

34.3 < 125n -5 2 10 0 

1.5 

Frequency Drift of 
the Quartz Oscilla- 
t o r  

Additive Noise in 
the Quartz Oscilla- 
to r  

Additive Noise in  
the Quartz Oscilla- 
t o r  Outside the Out- 
put Fi l ter  Bandwidth 

Note: The values stated in the table assume an output at  10 GHz. 
Power density at 5 MHz is the same except that the power 
density scale should be divided by ( l O O O O /  5)2 

3 . 4  Doppler Error 

The integral of Eq. (23) was computedusing the power density data of 

Table 11. The results are plotted in Fig. 7. Consider the case when the 

averaging time is short, say, 1 ms. 

e r r o r  increases. At a range of about 50 miles the e r r o r  reaches its asymp- 

totic value, approximately 0.4ftlsec. 

just sufficient, at this range, to  cause the frequency fluctuations of the returned 

c a r r i e r  t o  be uncorrelated with the transmitted ca r r i e r  reference frequency 

fluctuations. Thus, the difference between transmitted and received frequencies 

is just f i  t imes the r m s  frequency deviation for that averaging time. This is 

As range increases, the velocity 

The round-trip time to the target is 
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found using Table I to be 8 . 5  Hz atx-band. This corresponds to a monosta 

(one-way) velocity e r r o r  of 0 .425  f t /sec which is approximately the result  c 

tained. The same e r r o r  would have been obtained if  two independent, but si 

tistically similar,  oscillators had been used. In other words , the advantagc 

of monostatic operation, i. e. ,  same oscillator reference for  transmitter ar 

receiver,  a r e  partially lost when the delay to the target exceeds a certain 

amount. 

The results fo r  averaging times, A t  = 10 ms and 100 ms, a r e  simj 

except fo r  scale changes. In particular, for A t  = 10 m s  decorrelation is no 

evident until the target is at  a range of approximately 700 miles.  Note that 

At = 100 m s  decorrelation occurs with ranges on the order  of 1000 miles o r  

more.  It should also be noted that the e r r o r  due to instability with this par  

ticular oscillator at this averaging time is quite small  regardless of round- 

delay. 

3 . 5  Summary 

In this section it w a s  shown that coherent detection of doppler data 

not necessary provided that the oscillators used in the system have adequatc 

long- and short-term stability, and that the vehicle is at sufficiently long ri 

The e r r o r  contours of Fig.  7 a r e  applicable with a receiver of noise-bandwi 

2 kHz . Narrower noise-bandwidths, such as may be appropriate for  a deep 

space tracking mission, result  in smaller e r r o r s  since the doppler e r r o r  di 

to instability is approximately proportional to the square root of the receivc 

noise -bandwidth. 
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4. ONE-WAY TRACKING WITH A CARRIER ONLY 

As was mentioned briefly in Sec. 2 ,  it is possible to determine 

e trajectories by observing a CW car r ie r  signal emanating from the 

e provided there a re  enough observing (ground) stations in the system. 

This technique operates as follows: each station observes the change in 

range, O r ,  over a time interval, A t ,  by counting received doppler cycles 

during the interval. The measured change in range a t  each station canthen 

be expressed in te rms  ofthe particular station’s position and the coordinates 

of the trajectory at the start and end of the counting interval. For  example, 

i f  the i station has coordinates (X., Y., Z. )  and the s ta r t  point, Q has 
th 

1 1 1  1’ 
coordinates (x y z ) and the end point, Q2, has  coordinates (x y z ) the 1’ 1’ 1 2’ 2’ 2 
change in range is given by 

A r .  1 = A x 2  - X i ) 2 + ( y 2  - Y i ) 2 + ( ~ 2  - Z i ) 2  

Six o r  more such equations can be written; one for each observing station. 

These a r e  then solved for the six unknown coordinates of the s tar t  and end 

points. 

In this section, this technique and variations of it a r e  investigated. 

An e r r o r  analysis is performed and some general comments on errors a r e  

included. 

4 . 1  Statement of the Problem 

We a r e  concerned with the problem of tracking a vehicle which ca r  - 
ries a highly stable oscillator capable of emitting a tone of known frequency. 
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Our ground equipment consists only of several  listening stations which record 

the change i n  the phase of the tone from time t to t ime t + A t .  W e  assume that 

we a r e  given nominal positions of the vehicles at times t and t + A t ,  and also that 

the actual positions do not deviate far from the nominal ones. 

our measurements at each station to determine to a first-order approxima- 

tion the deviation of the actual positions from the nominal ones. Clearly a 

basic parameter of the system is the time change A t  over which we recordthe 

change in phase. We shall assume that A t  is fixed. 

W e  wish to use 

4 . 2  Analysis for Two Points 

With the given parameter A t  fixed we cannot hope to find out anything 

about the motion of the vehicle at an instant of time, and we must talk always 

in terms of averages over a time interval of length At. Within this limitation 

we can say that the motion of the vehicle at time t is completely described by 

the state vector 

s , ( t )  = (x(t)J y(t), z(t)J vx(t)> (t)J v&t)) (31)  
Y 

where (x(t), y(t), z(t)) is the position of the vehicle at time t and (v (t), v (t), v (t): 

is its average velocity over the time interval t to t + A t .  In the case where w e  

a r e  making measurements of the phase change between just two points on the 

vehicle's path a different state vector is convenient, namely 

X Y Z  

where of course (x(t+At), y(t+At), z(t+At)) is the vehicle's position at time 

t + A t .  

other is s e k n  a t  once from the equations 

That knowledge of one of these vectors is equivalent to knowledge of the 
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and 

P. = 
1 

x(t+At) = x(t)+ v (t) A t  

y(t+At) = y(t)+ v (t) A t  

z(t+At) = z(t)+ v (t) A t  

X 

Y 
Z 

x(t+At) - x(t) 
At v (t) = 

X 

( t + A t )  - y(t) 
At 

z(t+At) - z(t) 
At 

v (t) = 

v (t) = 

Y 

Z 

(33)  

(34) 

Suppose now that we have n listening stations located at the points 

(Xi, Yi, Zi) i =  1, 2,. . ., n and m points Q. = (x., y., z.) j = 1, 2, . . . m on the 

vehicle's path through which the vehicle passes at times t, t + A t ,  . . . , t+(m-l)  A t  
J J J J  

respectively. Denote the corresponding points on the nominal path by 
0 0 0 0  

Q. = (x , yj , z 1, j = 1, 2 , .  . ., m. In this section we deal in  a special way with 
3 j j 

the particular case of m = 2 and n = 6. 

theory for  general m and n. 

In a la ter  section we shall develop a 

Let the change in the number of cycles on the counter at station P i 
be pi as the vehicle moves from Q to Q,, then the corresponding change 1 
f .  in the distance of the vehicle from P. is given by 
1 1 

where c, A, f are the velocity, wavelength and frequency respectively of the 

tone. W e  can also express this distance in t e rms  of the coordinates of the 
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points involved 

-xi) 2 + (yl -Yi) 2 + (zl - Zi) 2 '  - (xl 

(36)  
0 0 

But since Q and Q a r e  close to Q, and Q, we have a first-order approxi- 

mation 
1 2 

6f.  = -&. 6x -mi16yl -n  6 z l + t  6x + m  by + n  6 z  ( 3 7 )  i 2  2 i 2  2 i 2  2 1 11 1 il 

where 6f .  is the deviation in f .  from the value it would have i f  the actual path 
1 1 

passed through Q and Q2, (6xl, by1, 6z l )  and (6x by 6z2)  a r e  the dif- 1 2' 2' 

1' ferences in coordinates between the points Q 

and (& ., m ., n. .) a r e  the direction cosines of the line joining P 

Equation ( 3 7 )  holds for i = 1, 2, . . . , n, so using ( 3 6 )  to determine 6fi we get a 

system of n equations in six unknowns which may be written in the form 

Q: and Q2, Q; respectively 

to Qo. 
i j  i j  i j  i j 

AU = V (38)  

where 

v =  

6fn 

' u =  (39)  
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and 

A =  

+ll’ 11’ 
- m  

nl’ -m 

-“11’ %2’ 

nl’ ‘n2’ -n 

m12’ 

m n2’ 

1 2  
n 

n n2 

The least squares solution of (38) is given by 

where A’ is the transpose of the matrix A. 

it may be found in  Scheffe . 
simpler form- 

This is a standard result  and 

If n =  6 and A is nonsingular, (41) reduces t c  6 

U = A - l V  

If instead of the state vector s (t) we used the state vector s 1 (t) 2 
w e  would again obtain a system of Eq. (38)  where V is the same a s  befc 

but U, instead of being the deviation in the state vector s (t), is the devia 

in  s (t) from its nominal value, that is 
2 

1 

u =  
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and 

-n11+n12’ L12AtD m12htD n A t  

l2 \ -ml l+ m12’ 

\ 

\ 

1 

I 

1 

1 

1 

1 

1 

I 

1 

1 

(44) 

4 . 3  Error  Analysis 

In this section we shall calculate the variance of the least  squares 

solution (41)  in te rms  of the variances of the known quantities Of., which we 

assume a r e  uncorrelated normally distributed random variables with equal 

variances 0 , 

matrix C of the solution (41) defined by 

1 

2 6 Again from Scheffe it is a standard result  that the covariance 

is given by 

(46) 
-1 v 2  C = (A’A) 

Thus, for example, the variance for the deviation 6x and therefore also for 

the coordinate x 1 
for the point Q, is Cll+ C22+ C 

1 
More generally the variance of the solution 

Thus 
11’ is just C 

and for Q, it is C44+ C55+ CG6. 33 
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the variance for finding the complete state vector s is simply 2 

var  [s 3 = T r  C (47)  n 

where the right-hand side is the trace of the matrix C. 

If {xi] i =  1, 2, . . , 6 denote the eigenvalues of AIA we can rewrite 

(47)  as 

1 

x 1 x 2  '6 
+ -  + . . + - )  var  [s 3 = 0 ( -  

2 1  
2 

In the case n =  6 we may express (48) in te rms  of the eigenvalues of 

A rather  than of A'A. Thus if  [Xi] i=  1, 2, . . . , 6 a r e  these eigenvalues we 

have 

We should note carefully that the above e r r o r  analysis takes no 

account whatsoever of e r r o r s  in the numerical computation of the solution (41 ), 

but only of the effect of e r r o r s  with a given distribution in  the determination 

of the deviations 6f.. Thus it is important to recall  the gross e r r o r s  which 

usually a r i s e  in the numerical inversion of a nearly singular matrix. 
1 

4 . 4  Symmetrical Arrays and Singular Paths 

Equations (41)  and (46) above show that the core  of the computation 

is the inversion of the matrix A'A, and that in the special case n =  6 we need 

to invert  only A. 

as  the case may be, is singular or nearly so. This is due entirely to the 

geometry of the station a r ray  and the relation of the vehicle's path to this 

array.  
7 give here  one remarkable result  mentioned in Holberg, Voss  and Kampmeyer . 

Thus it is vital to recognize situations in which AIA o r  A, 

Many interesting results remain to be discovered in this area. We 
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Suppose we have six stations in a plane’that is, n = 6, and that the 

projection of the line connecting Q1 and Q2 onto the plane happens to pass through 

the a r r ay  in such a way that three of the stations a r e  reflections in the path’s 

projection of the other three stations. 

l ie  on the path’s projection. 

This means that we have a whole plane of possible paths which give r i s e  to 

singular matrices, s o  that an a r r ay  with such a property is very poor indeed. 

The result  i s  proved by noticing that the matr ix .  A must have the form 

We assume that none of the stations 

Then the result  is that the matrix A is singular. 

-n 

-n 

13’ 13 

13’ 13 

-m 

-m 

‘13’ 

-‘ 13’ 

‘15’ 
-n 

-n 

15’ 15 

15’ 15 

-m 

\-‘15’ -m 

A =  

n 

n 

m 

m 

-‘23’ 23’ 

m 

m 

25’ 25’ 25 

‘25’ 25’ 25 

m 

‘12’ m 12’ n 1 2  

-n 

-n 

11’ 11 

11’ 11 

-m 

-m 
-%1’ 

I 

I \ 

the determinant of which is the same a s  the determinant of 
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The determinant of (51) is zero, which shows that A is singular. 

It is also apparent that as the points Q and Q get c loser  together 
1 2 

the direction cosines of the lines to them f rom the points P. become more 

nearly equal, so that in general AIA has its first three columns nearly equal 

to its second three columns and therefore it is nearly singular. 

the e r rors  in the numerical computation become predominant for  sufficiently 

small  At .  

1 

Therefore 

We conjecture the following rule of thumb for  relating the vehicle's 

path and the geometry of the array.  For a given path and a given number of 

stations in a plane, a good a r r ay  to determine this path is one which has all 

the stations on a single line parallel to the path's projection, a bad a r r ay  is 

one which has the stations on a line perpendicular to this projection. 

4 . 5  Analysis for m Points 

Suppose we have n stations P and m points Q. on the vehicle's 
i J 

path. 

want to single out any point Q. for special treatment in estimating the change 

of range of the vehicle f rom the various stations P . We therefore introduce 
i 

Our analysis here  will  differ f rom the two point case, since we do not 

J 

the bias b. of station P. for i=  1, 2, . . . , n. By this we mean (-b.) is the 
1 1 1 

range of P from some agreed upon initial point on the path. Then i f  the 
i 

counter reading at  P is p . .  when the vehicle is at Q. we have 
i 1J J 

where g i j  
initial point to Q.. 

J 
nates of P. and Q. we have 

1 J 

is the change in range when the vehicle moves from the unspecified 

Expressing this now in te rms  of the bias and the coordi- 
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(53) i 
+ b  2 -Yi)2 + (Zj - Zi' 2 '  

(x.  -xi) + (y J gi j 

Assuming we a r e  given a nominal path of the vehicle and that the deviations 

f rom it a r e  not large we have a first-order approximation to (53)  namely 

which holds fo r  i =  1, . . . , n, 

6g.. we may write (54) as a system of nm equations 

j = 1, . . . , m. Thus using (53) to determine 

1J 

AU = V (55) 

in the n+ 3m unknowns {6b 

In (55) we have 
. . . , 6b ] and [ax., by., S z . ]  j =  1, . . . , m. 1' n J J J  

U J V 
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and 

A =  

where 

is a n x 3 matrix and I is the n x n identity matrix. 

tion of (55) has the same form as (41) and in the special case that A is a 

square matrix it has the form (42). 

The least  squares solu- 

The e r r o r  analysis also yields a resul t  

of the form (46). 

that the inversion of A'A and of A itself involves the inversion of matrices 

Because of the special form of A in (57), it is easy to show 

of order  n at most. 

The numerical experiments of Holberg, Voss  and Kampmeyer7 indi- 

cate that the variance of the solution f o r  a given point is reduced if  this point 

is one of several  being determined rather than one of a pair. 

this is of course fo r  fixed A t .  

e r r o r  changes if we subdivide the intervals determined by A t  and take reading 

We s t r e s s  that 

W e  have not - determined in the above how the 

a t  the additional points. 
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It is of interest  to note that the only two cases  where the system ( 5 7 )  

has the same number of equations a s  unknowns a r e  m =  2, n =  6 and m =  4, 

n =  4. The system is underdetermined in the cases  m =  1, n r  1; m =  2, 

1s n s  5; m = 3, 1 s n s  4 and m 2  4 ,  1 S n s  3. 

is overdetermined. 

In all other cases  the system 

4 . 6  The Free-Fall Case 

If the vehicle is moving in the gravitational field and there is no other 

force influencing its motion, then it is possible in some cases to find the solu- 

tions (41), (42)  and (46)  ra ther  easily. 

observation by Potter in Battin8 that if the matrix A'A is of even order, 

it is essentially a symplectic matrix and therefore its inverse can be found 

by a simple rearrangement of its elements. 

order  is symplectic if  

To do this we must make use of the 

We say that a matrix Q of even 

Q ' J Q  = J (59) 

where 

and I As an identity matrix. It is easily verified that 

52 = -1 (61) 

&-l = - J Q I  J (62)  

and hence that 

The importance of this result  l ies in its applicability to vehicles in orbit, and 

therefore it is  useful for problems of guidance of vehicles and fo r  te r res t r ia l  

navigation systems of the Transit  type. 
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4.7 Summary 

The quality of the trajectory determination obtained with the c a r r i e r -  

only technique is highly dependent on the geometric relationship between the 

vehicle trajectory and the ground-station locations. In some cases, the e r r o r  

in start o r  - end point determination can be as low of 2 or 3 times the measure- 

ment e r r o r  of the changes in range observed at each site. On the other hand, 

it is possible for the trajectory determination equations to "blow up'' yielding 

infinite e r r o r s .  One way to avoid this difficulty is to add more stations at 

suitable locations. Another way is to use some inherent properties of the 

trajectory, if any, to provide additional information. Such a technique can 

be applied with free-fall vehicles. It was also found that the trajectory de- 

termination computation is considerably simplified in the free-fall case .  
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5. ONE-WAY RANGING WITH RANGE-TONES 

The one-way ranging method described in Sec. 4 offers several advan- 

tages; namely, the hardware required for  implementation of this technique is 

not complex and target position can be determined unambiguously. On the other 

hand, it cannot produce accurate tracking data in real-time (unless initialization 

data is supplied by other means). Accurate tracking data is available only after 

the vehicle moves such that the target-station configuration changes substan- 

tially. 

using doppler-only data is highly sensitive to the tracking geometry. 

In fact, it can be generalized that the accuracy of tracking data obtained 

It is possible to augment the tracking characteristics of the doppler- 

only one-way ranging system by adding ranging tones to the vehicle-borne 

transmitter output. 

car r ie r  and can be used to provide range-difference data. A s  describedin Sec . 2,  

this data is ambiguous. But, note that sufficiently accurate target position data 

can be derived from the doppler-only measurement to resolve the ambiguities. 

Similarly, the data derived from the range-tones can be used to improve the 

doppler -only measurement because the range-tone data is available in real-time 

Thus, the data obtained with these two techniques, doppler-only apd range-tone, 

are complementary to each other. 

The range -tones a re  phase modulated onto the transmitted 

The range-tones can be modulated onto the CW car r ie r  without signifi- 

cant reduction of ca r r i e r  power if  the deviation of the modulation is small. Thus 

there is no important deterioration of the doppler-only portion of the system due 

to the addition of range-tones. 

increase system complexity. 

The addition of range-tones does, however, 

The advantages gained by adding.range-tones must be weighed against 

the cost of the system required to process the range-tones to extract data. 

vehicle -borne transmitter must be modified to include a range-tone generator 

The 
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and modulator. 

in complexity of the vehicle-borne part  of the system is serious enough to 

warrant complete justification. In addition, the ground-based receiving stations 

must be equipped with range -tone demodulators and phasemeters. Finally, each 

ground station must be supplied with a synchronous timing signal. The preci- 

sion required of the timing signal depends on the specified ranging accuracy of 

the system. 

within 1000 ft. , a timing reference with accuracy of at least 1 ps is necessary. 

This can be obtained by synchronizing a stable local reference to a standard 

timing signal such as WWV o r  LORAN-C. 

to be obtained with accuracy of 10 f t . ,  a special stabilized baseline timing sys-  

tem must be used. 

lengths a r e  long. 

This modification is not difficult technically, but any increase 

For example, i f  the system is required to measure position to 

On the other hand, i f  position data is 

This lat ter system is costly, especially i f  the baseline 
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6.  CONCLUSIONS 
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The long-term stability of presently available ultrastable oscillators 

is such that frequency uncertainty (long-term) can now contribute less to  dop- 

pler e r r o r  than the uncertainty in the speed of light. 

justifying the u s e  of these devices in one-way tracking systems. The effect of 

short- term instability has  been examined in detail. 

e r r o r  due to short - term instability can be reduced by coherent demodulation 

using the reference for transmission and reception. However, this reduction is 

obtainable only for vehicles withsufficiently small  range. For most long -range 

targets, coherent detection is unnecessary. Furthermore,  the e r r o r  due to  

short- term instability of the ultrastable source is small. 

This is the basis for 

It is found that the doppler 

A method for determining vehicle trajectories from doppler data 

observed at several  ground sites is presented. This technique can yield high 

quality trajectory data provided the geometric relationship between trajectory 

and ground sites is suitable. A method for augmenting the capability of this 

technique is described which requires the addition of sinusoidal P M  ranging 

tones to the carrier transmitted from the vehicle. 

requires  a considerable increase in  overall system and data processing com- 

plexity. However, this modification allows for  one-way tracking with geome- 

tries which preclude the use of carrier-only operation. 

This medification d a o  

The detailed design of a suitable one-way tracking system is strongly 

dependent on the particular tracking requirements and vehicle dynamics. But, 

in general, it can be seen that one-waytracking canbe  implemented successfully 

for deep-space tracking missions, especially with free-fall vehicles. Further  - 
more, the usefulness of this technique in a global navigation system has already 

been demonstrated. This application h a s  a great  deal of potential, considering 

the present state -of - the -art. 



REFERENCES FOR PART I 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

Hewlett-Packard Catalog No. 25, April 1965, except a s  noted. 

Cutler, L. S .  , and Searle, C. L. ,"Some Aspects of the Theory 
and Measurement of Frequency Fluctuations in Frequency Stan- 
dards,"Proc. IEEE, VOl. 54, NO. 2, pp. 136-154, Februaryl966. 

Lacey, R.  F., e t  al, "Short Term Stability of Atomic Frequency 
Standards," Proc.  IEEE, Vol. 54, No. 2, pp. 170-175February 
1966.  

Cutler and Searle, loc. cit. Fig. 13. 

Baghdady, E. J. , Lincoln, R .  N. and Nelin, B. D. , "Short Term 
Frequency Stability,'' Proc.  IEEE, Vol. 53, No. 7, pp. 704- 
722, July 1965. 

Scheffe, Henry, The Analysis of Variance, Wiley, 1961. 

Holberg, Dieter E. , Voss ,  Robert A. , and Kampmeyer, PrestonM. , 
"Statistical E r r o r  Analysis of Trajectory Determination from Non- 
Initialized Doppler -Cycle Counts , ' I  Instrumentation Development 
Directorate, White Sands Missile Range, New Mexico, June 1966. 

Battin, Richard H. , Astronautical Guidance, McGraw -Hill, 1966. 

42 - ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 

~~ 



PART I1 

FLUCTUATION SPECTRA OF ULTRASTABLE OSCILLATORS: 
MEASUREMENT AND ESTIMATION 

1. INTRODUCTION 

The increased accuracies and precisions demanded of space and ground- 

The characd support systems have led to the need for ultrastable signal sources. 

terization of the stability of such sources has been the subject of much recent 

research. 

A characterization in terms of the power  spectrum of phase or frequency 

.This  offers a direct  1 - 5  fluctuations has been found highly useful and meaningful 

link between oscillator behavior and the performance of the system incorporatin1 

the oscillator. Further, it enables the identification and evaluation of the insta- 

bility mechanisms within an oscillator. 

This report  is principally concerned with the measurement of the 

fluctuation spectra of ultrastable oscillators. 

mented i n P a r t  11 of this report, as  defined in the Task Statement, is: 

The objective of the study docu- 

Development of a measurement technique for determining in 
the frequency domain the phase fluctuation spectrum of highly 
stable oscillators. The major area of interest  is that part of 
the spectrum from Hz to l o 3  Hz. This task will not 
include hardware development but wil l  consider the best way 
to use available equipment to produce the desired results.  

The measurement of oscillator fluctuation spectra  involves two distinct 

First, there is the extraction of the phase o r  frequency fluctuations fron steps. 

the oscillation signal; and then there is the measurement o r  estimation of the 

corresponding power spectra from the extracted fluctuations. 

While these two steps a r e  indeed distinct both logically and experimen- 

tally, nevertheless the spectral-estimation techniques to be utilized dictate the 
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manner of extraction and presentation of the fluctuations. 

begin in  Sec. 2 by considering the general spectral-estimation techniques capable 

of achieving the task requirements in order  to determine the methods of extrac-  

tion and presentation of the oscillator fluctuations that must  be used. 

Consequently, we 

Several fluctuation-extraction techniques are currently available, some 

(desci-ibed in Sec. 2 . 1 )  a r e  utilized in the laboratories of GSFC, and another was 

developed by ADCOM, Inc. 

use of some of these techniques to extract the fluctuations of ultrastable oscilla- 

tors.  

utilizing several observation periods and sampling rates. 

suitably recorded for presentation to a digital computer programmed to esti-  

mate the spectra. 

6 

Section 2 includes specific recommendations on the - 
We find it necessary to  obtain sequences of samples of the fluctuations, 

The samples must be 

Mathematical techniques for spectral  estimation are presented in detail 

i n  Secs. 3 and 4. 

observations is a very young science. 

l e s s  than eight years  old. 

recent research ,some of which is not widely available. Consequently, we 

have found it necessary to compile, in Sec. 3, an exposition of the theoretical 

foundations of spectral estimation. 

The estimation of spectra of random processes f rom finite 

The earliest exposition of the subject 
7 

is 

We have drawn in Secs. 3 and 4 on the resul ts  of very  
8-1 1 

The foundations compiled in Sec. 3 lead to the practical computational 

The most useful procedure for our  purposes is procedures detailed in Sec. 4. 

presented and discussed in Secs. 4.1 - 4.3. Sections 4.4 - 4.7 are concerned wit1 

the estimation of discrete (i. e. ,  periodic) components which may be embedded 

i n  the spectra. 

c lass  of fluctuations (autoregressive time series). 

dations on the u s e  of these procedures are drawn in Sec. 5. 

Section 4.8 outlines a useful procedure applicable to a special 

Conclusions and recommen- 
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2. EXTRACTION OF OSCILLATOR FLUCTUATIONS 

2.1 Available Fluctuation Extraction Techniques 

Several techniques a re  currently utilized in the laboratories of GSFC 

to extract oscillator fluctuations. We begin by reviewing these techniques in 

order  to determine their usefulness for the task at hand. 

Since all oscillator fluctuations a r e  only relative with respect to 

another oscillation, any extraction system must utilize two oscillators, one of 

which acting as reference. Providing that the statistical independence of all 

oscillator fluctuations a re  assured, two-at-a-time measurements upon three 

oscillators a re  sufficient to determine the fluctuation spectrum of each. Of 

course, i f  i t  is known beforehand that the spectral  density of the reference 

oscillator fluctuations a re  negligible in comparison with that of the oscillator 

under test, at  least  i n  the spectral region of interest, then the desired spectrum 

can be obtained from one measurement. 

Figure 1 depicts the configuration of the e r r o r  -multiplication system 

common to the available GSFC extraction techniques. (The frequencies 

3 Oscillator 

Error  
Mu1 tiplie 

Osci I lo tor 

3200 MHt 

1 I 2OMHz 

9180 MHz 

HP1500 

R-3070 

Fig. 1 E r r o r  Multiplication and Synthesis System. 
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in Fig. 1 are offered only as examples. ) The frequency fluctuation, denoted by 

c, is magnified by a large factor (1840) and emerges on a low frequency output 

oscillation Af (typically 100 kHz). 

sensitivity to small fluctuations of the fluctuation extraction techniques. 

This e r r o r  multiplication enhances the 

Figure 2 i l lustrates three different fluctuation-extraction instrumenta- 

tions that can follow the e r r o r  multiplier. 

tages and limitations that determine its usefulness for  the present purposes. 

The cycle-counting technique (also called period-counting) shown in 

Each technique has inherent advan- 

Fig. 2(a) was utilized primarily to determine "fractional frequency instability. 

The output of the e r r o r  multiplier is first divided for convenience then intro- 

duced as a triggering signal to a gate in the counter. 

zero-crossing, passing the high-frequency external clock signal (obtained from 

the reference oscillator via the synthesizer) which is "accumulated" o r  counted 

in the counter register. 

multiplier output, the gate is closed and the total count read. 

the external clock signal is chosen a simple decimal fraction of a second, 

say 0.1 ps, the counter will display the total number of 0.1 ps that equals the 

integral number of the input periods. 

is open by T. 

and the resulting data reduced to yield the average value and the mean-square 

deviation of the accumulated periods. 

by the average of the period accumulated in a time T is denoted by I(T). 

can readily be shown that this normalized rms deviation of period is essentially 

equal t o  the normalized r m s  deviation of frequency for highly stable oscillators. 

For  the present purposes, the cycle-counting technique may be utilized 

The gate opens at one 

After an integral number of periods of the e r r o r -  

A s  the period of 

We denote the length of time the gate 

Usually several  consecutive measurements of length T are made, 

The r m s  value of the deviation divided 

It 

to yield directly a measure of frequency fluctuations. The least significant 
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(b) Phase - Detector Technique 

0 L PF 

( c )  Phase- Locked Loop Technique 
R -3071 

Fig. 2 Three Fluctuation Extraction Techniques. 
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digits of the counter readout a r e  directly proportional to frequency fluctuation 

A+, the proportionality factor being readily determined by initial calibration. 

The conditions for the validity of this statement are:  
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a. the oscillator is highly stable, and 

b. the reciprocal of the counting duration T 
is much greater than the extent of the region 
of interest  in the spectrum of the frequency 
fluctuations. 

The cycle counter should be operated without averaging, i. e.,  each 

count should appear separately at the output. 

samples of the frequency deviations A 4 ,  which must be digitally recorded (e. g, ,  

on punched-paper tape) for subsequent processing. 

uniformity of the sampling intervals. 

according to the oscillator fluctuations, and since most counters have a fixed 

dead time between gate closing after one count and gate opening for the next 

count (typical dead time is 100 ms)  it follows that the sampling intervals a r e  

not uniform. However, as long a s  the oscillator is highly stable, the sampling 

intervals are almost exactly uniform, and should introduce negligible inaccuracj 

in the measured spectrum. 

The output is then a sequence of 

A question a r i ses  as to the 

Since the gate time T varies  (slightly) 

A simple way exists for avoiding this slight sampling nonuniformity, 

In this namely to utilize the counter in the frequency (vs period) count mode. 

case the f N scaler shown in Fig. 2(a) is removed and Af is chosen high enough 

for good resolution. The counter gate is controlled by the external clock input 

thereby ensuring uniform sampling, and the number of cycles of the e r r o r  

multiplier output a r e  counted. 

a r e  directly proportional to the frequency fluctuation 4, and may be digitally 

recorded for subsequent processing. 

measurement is that 1 / ~  must be much greater than the extent of the region of 

interest  in the spectrum of the frequency fluctuations. Furthermore, the 

sampling intervals a r e  now exactly uniform. 

Again, the least  significant digits of the counter 

The only limitation for the validity of this 



A limitation of the cycle-counting technique is imposed by the counter 

dead time which places a lower limit on sampling period, For  example, a 

counter with dead time of 100 m s  cannot sample as fast as 10 samples per 

second. 

significant spectral components above 5 Hz, otherwise spectral folding (or 

aliasing) will  occur. We shall return to this aliasing problem a little further 

on. We simply point out here that a long dead time can readily be reduced by 

appropriate circuit modifications i n  the counter, since the counter speed is 

fundamentally restricted only by the counter recovery time which is much 

shorter than the dead time. 

Such a sampling rate would not be suitable for fluctuations containing 

The phase-detector technique shown in Fig. 2(b) is direct and simple. 

It yields an analog waveform proportional to the phase fluctuation A 4  provided 

it does not exceed k n  radians. This waveform may be recorded directly o r  

i t  may be sampled and digitally recorded for subsequent processing. 

limitations of this technique are: 

The 

a. The output waveform suffers large discontinuities 
as A 4  goes through & T  radians. 
remedied in subsequent processing, however, by 
identifying the direction of the discontinLiities and 
accumulating multiples of n radians. 

b. The phase detector is sensitive to incidental AM 
at its input, especially when 4 approaches f n  
radians. This AM-to-PM susceptibility may be 
reduced by introducing an amplitude limiter 
before the phase detector. 

This can be 

The phase-locked loop technique shown in Fig. 2(c) utilizes the VCO 

essentially as another phase reference. 

a loop is a high-passed version of the phase fluctuations A 4  plus the phase 

fluctuations of the VCO itself. 

the loop bandwidth. 

implement, this technique is not suitable for extraction of slow phase 

fluctuations. 

It is well  known that the output of such 

The high-pass cutoff frequency is essentially 

Since loop bandwidths narrower than 1 Hz are difficult to 
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Satisfactory resul ts  have been obtained with this technique in conjunc- 

tion with an automatic spectrum analyzer, down to about 15 Hz. 

VCO fluctuations i n  this spectral  region a r e  apparently small  compared with 

the measured maser  fluctuations. A simple way to check this is to use an 

identical VCO, with its control terminals shorted, as the input to the loop. The 

measured spectral density is then simply twice that of each VCO, and should 

be found to be negligible compared to the fluctuation spectra  measured with the 

oscillator. 

spectrum analyzers, it should be possible to obtain spectral  measurements 

down to about 3 Hz. 

The internal 

By utilizing narrow loop bandwidths and low -frequency automatic 

Finally, it is important to recognize that any fluctuation extraction 

technique introduces some internal fluctuations of its own. 

characterized by the residual fluctuation spectra measured with the extraction 

system operating i n  common mode, i. e., with a single stable oscillator used 

both as reference and as input to be measured. No satisfactory measurements 

of the residual spectra of the three techniques are presently available, so  that 

it is impossible to tell the relative meri ts  of the techniques beyond the limita- 

tions discussed above. 

2.2 Spectral -Estimation Considerations 

These are best 

In this section we consider some general properties of the spectral-  

estimation techniques capable of achieving the present task requirements in  

order  to determine the methods of extraction and presentation of the oscillator 

fluctuations that must be used. 

Automatic spectrum analyzers can accommodate the high two or three 
0 3 

orde r s  of magnitude of the desired spectrum (10 o r  lo1 to 10 Hz). Below 

this range (below 10 

utilizing suitable records of the fluctuations. 

1 Hz, say) we must resor t  to computational techniques 

These computations would have 
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to be performed on the only available and practical tool, namely the digital 

computer. Thus the fluctuations must be suitably sampled and quantized before 

presentation to the computer. This raises several  questions: 

a. 

b .  

c . 

How long must the sampled record b e ?  

How rapidly must the fluctuations be sampled? 

Which fluctuation-extraction technique is suitable 
for the purpose ? 

The first question is related to the spectral  resolution obtainable from 

a finite record.  A well-established result is (see Ref. 7, p. 147) that it is i m -  

possible to resolve two spectral components closer than 1 / T  Hz apart  from a 

record of duration T .  Since it is desired to extract the spectrum down to 10 

Hz, we must resolve any component at that frequency from one at zero fre- 

quency. We find that the corresponding duration of the record must be greater 

than 28 hours! 

-5 

Question (b) is related to the spectrum folding (or aliasing) phenome- 

non mentioned ear l ie r .  When an analog waveform is uniformly sampled every 

A t  seconds, the spectrum of the samples can be shown to be related to that of 

the analog waveform in the manner iilustrated in Fig.  3 (see Ref. 7, p.  31 and 

p. 117  for a proof and f u l l  discussion). The "Nyquist frequency" around whose 

A 6 C D E - -  
I -  I I -  ---- - A@ f N 2fN 3fN 4fN 5 f ~  frequency 

Before Folding 

Exploded 
View 

R- 3072 

- - - 3 E  

- A  

0- 

0- - 
0 f N 

Fig. 3 Spectrum Folding o r  Aliasing. 
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multiples folding occurs is f = - and the value of the spectrum of the 

sampled waveform is the sum of the values of the spectrum of the original 

waveform a t  the dotted frequencies. Clearly, if the original analog waveform 

contained significant components at frequencies above the Nyquist frequency, 

then the spectrum estimated from the sampled replica of the waveform will 

not be a good estimate of the spectrum of the original waveform. Stated in  a 

different way, the sampling must be rapid enough so that the significant par t  

of the spectrum lies below the Nyquist frequency. 

N 2At '  

Now, if  the original spectrum contains significant components up to 

Combining this figure with the 1 kHz , the sampling period must be 1 / 2 ms  . 
28-hour required duration,we have a staggering amount of input data that must 

be processed by the computer. To avoid this problem, we recommend breaking 

the spectrum into three overlapping regions, and then recording data and per -  

forming computations for each region individually. The proposed regions a r e  

listed below, along with the corresponding minimum record lengths and maxi- 

mum sampling intervals. 

Region From To  Min T Max A t  

High 1 O-'Hz 10  Hz 10  sec 5 m s  

Medium 1 o - ~  1 oo 1000 sec  0. 5 sec  

Low 1 o - ~  10 28 hours 5 0  secs  

2 

- 2  

In taking data for each region, it is intended that the fluctuations be 

lowpass filtered prior to sampling in order  to avoid aliasing problems, with the 

filter cutoff frequency placed below the upper end of the region. 

turn to the matter of filtering a little further on. 

We shall r e -  
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regions. 

about a Nyquist frequency of 5 Hz, w e  must ensure beforehand that the spectral 

content above this frequency is small  compared with that below it. 

the dead time must be reduced. 

filtering technique presented in the following section must be used. 

Furthermore, since the long dead time (100 ms)  causes aliasing 

Otherwise, 

To obtain data for lower regions, the digital- 

A word about recording of the samples is in order  here.  For accuracy 

reasons, it is best to use digital recording, i. e . ,  af ter  quantization. Punched- 

paper tape is very suitable for this purpose, at least  for the low and medium 

regions. The high region requires 200 recorded samples per second, which 

may be too fast for punched tape. 

Analog recording (magnetic or s t r ip  chart) should be used only a s  a las t  resor t ,  

because of the quantization and synchronization problems upon replay, a s  well 

as  the possible inaccuracies. 

Magnetic tape can be used in this case. 

2 . 3  Digital Filtering 

Powerful techniques for lowpass filtering of sampled waveforms by 
1 2  digital means a re  available 

quency unrestricted by component size as  in analog filters, almost flat ampli- 

tude and perfectly flat phase responses in the passband, and extremely sharp 

cutoff ra te  in the hundreds of dBs per octave. We shall not attempt here an 

exposition of the theory behind these techniques, but simply indicate the cornput: 

tional procedures involved. 

. They have the advantages of arbi t rary cutoff f r e -  

Basically, a discrete version of the convolution integral is implementel 

on the computer, according to the formula 

m s i n o  iOt 
co x ((n+i) A t )  

w i A t  y W t )  = 
i= -m co 

( 2 . 1 )  
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The input data x (nAt) a re  the samples obtained with a short enough M that no 

significant aliasing occurs. The filtering function s in  w i A t / w  i At cor re-  

sponds to the impulse response of the ideal lowpass filter with cutoff frequency 

o . The summation in Eq.(2.1) is over ( 2  m) te rms  rather than an infinite num- 

ber, so that the resulting filtering will be only an approximation to the ideal, the 

quality of the approximation being determined by the number of te rms  (2 m). 

Generally, a good approximation of ideal filtering is obtained i f  several "lobes" 

of the sin o 

lobes, the corresponding m can be found to be 3n/0 

tions a r e  available , e. g. using Chebyshev polynomials, and some of these 

reduce the amount of computations required. The lowpass -filtered samples 

y (n A t )  obtained by digital filtering need not, of course, be a s  finely sampled as 

the original samples x (n A t ) .  

samples need only be spaced by 1 /4nw 

compute y (nAt) at widely spaced values on n, the increments of n being given 

co co 

co 

i At/o i At a r e  included in the summation. If w e  include three 

A t .  Other filtering func- 
co co 

co 7 

In fact, since the cutoff frequency is w , the 

seconds. Thus, it is necessary to 
co 

co 

by w/  wco At. 

Let u s  illustrate the above discussion by a typical example. Suppose 

that the fluctuations were filtered by an analog filter cutting off at  1 Hz. Sampler 

were obtained at A t  = 0. 5 secs  for use in estiAmating the medium spectral region 

It is desired to digitally filter these samples to accommodate the low region, so 
-2 

that w 

must u s e  m = 3 n / o  

to compute each value of y(nAt). The increments of n should be n / w  

i. e. , y (n A t )  need be computed only for n = 0,100,200, etc. 

procedure would then be to apply Eq. ( 2 . 1 )  to the first 600 samples to obtain 

y(O), then shift 100 samples by dropping the first 100 and inserting a new 100 

samples to  compute y (100 A t ) ,  and so on. Inner product programs, such a s  the 

= 27r X 10  rad/ sec.  To include three lobes of the filtering function we co 
A t  w 300, i. e. ,  600 input samples a r e  fed into the computer co 

A t = l O O ,  

The computational 
co 
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AD/CoM 

one presented in Sec. 4.1 below, may be used to facilitate the implementation 

of Eq. ( 2 . 1 ) .  Data must be taken for  a period of at least  28 hours in order to 

obtain spectral resolution down to 10  Hz. Thus, the input data consists of 

at least  2 X 10  samples obtained at  0. 5 sec  intervals. 

puter is available, i t  is possible to avoid recording this long string of data by 

using the computer in an on-line configuration, and only recording the output 

consisting of at least  2 X 1 0  

-5 

5 
If a small  digital com- 

3 samples. 
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. .  

3. THEORETICAL FOUNDATIONS OF SPECTRAL ESTIMATION 

3 .1  Introduction 

In Sec. 2 of this report samples { X(t), t = A t ,  2At, . . . "At} of the time 

series{ X(t), t in T} were obtained where X(t) is any one of a number of ob- 

servables of significance in the study of highly stable oscillators. Fo r  example 

X(t) may be the phase o r  frequency of the oscillator at time t, or  the fluctua- 

tions of the frequency about the nominal frequency o r  of the phase about the 

nominal ramp, o r  more probably some multiple of the phase or frequency 

difference between two oscillators. 

servables to  be measured, the appropriate instrumentation for these measure- 

ments, the length of the samples and the sampling rate  were  considered there. 

In Sec. 3 we shall be concerned principally with the extraction, from a sample 

{ X(t), t = A t ,  2At, . . . , "At} , of an estimate of the spectral density function 

i f  the process has a continuous spectrum, o r  of the spectral density function 

and the signal power and frequency i f  the process has a mixed spectrum. Sections 

3 . 1  - 3 . 1 1  provide a general theoretical introduction to the problem. 

4 is more practical. 

sample time ser ies  should concentrate on Secs. 4.1, 4.3, and 4.8. The choice 

of various parameters in the computations is discussed in Sec. 4 . 2  and the ad- 

ditional procedures needed for the case of mixed spectra may be found in 

Secs. 4 .4 -  4.7. We make liberal u s e  of Refs .  8-11  in Secs. 3 and 4. 

Questions concerning the choice of ob- 

Section 

The reader who simply wants to know how to process the 

3 .2  The General Structure of Time Series 

A time series is a family{ X(t), t in T} of random variables X(t) where 

the parameter t is interpreted as real time. 

X(. ) is called a random function, if T ={ 0, f At ,  f 2At, . . .} o r  T={ At, Zht, . . .} 
then X (. ) is called a random sequence. 

If the set T is the real l ine then 

Continuous (discrete) parameter 
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processes a r e  those for which the random variables a r e  functions (sequences). 

In practice we have a continuous or discrete sample of length N' of the time 

ser ies  X(t). 

X(t) from this sample. In order  to do this we assume one or other model fo r  

X(t) and we use our observations to f i t  the model in the best possible way. We 

shall t rea t  both the continuous and discrete parameter cases  simultaneously, 

and whenever the equations for the cases differ we write the equation for the 

continuous case above and its discrete analogue below. 

The general problem is to infer the statistical characteristics of 

A common model for X(t) is 

X(t) = m(t) + Y(t) (3 .1)  

where m(t)  represents a mean function, signal or trend which is assumed to 

be nonrandom and Y(t) is a fluctuation o r  noise function which is stochastic. 

Furthermore it is assumed that there is a fixed number q.of known functions 

gl(t), . . . g (t) such that m(t) may be written a s  a l inear combination 
9 

m(t) = c,gl(t)  + . . . + c g (t) 
9 9  

For  example, we may have 

k 
g (t) = sin ( W k t  + 4k) or  gk(t) = t k 

(3 .2 )  

(3 .3)  

and 4 (k = 1,2,. . . , q) have to be estimated from the 
k' Wk k 

Also it is assumed that 

The constants C 

sample. 

E [  Y(t)] = 0 (3.4) 

for all t ,  and that y(t) has finite second moments, i. e .  , 

for all t .  Some notion of stationarity is required for  the validity of ouranalysii 
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so w e  assume Y(t) is covariance (i. e. , weakly o r  wide sense) stationary, that 

is E[ Y(t) Y(t +v)] is independent o f t  and depends only on v. 

function R(v) can then be defined by 

The autocovariance 

(3.11) 

(3.12) 

[COV [ Y(t), Y(t + v)] for v 2 o 

for v < 0 (3.6) 

The domain of definition of R(v) which w e  shall denote by V is given by 

v = {  v, - 0 0  < v < m }  (3.7) 

in the continuous parameter case, and by 

V = { V,v=O, & A t ,  f 2 A t ,  . . .}  (3.8) 

in the discrete parameter case. From (3.4) it is clear that 

m(t) = E[ X(t)] (3 .9)  

and that 

cov [ Y(t), Y(t + v)] = E [ Y(t) Y(t +v>] = cov[ X(t), X(t+v)] 

It should be noted that the process X(t) may have a trend m(t) which depends 

on t and sti l i  be covariance stationary according to our definition. 

(3.10) 

Assuming R(* ) is continuous at  v = 0,in the continuous (discrete) 

parameter case Khintchine (Wold) showed that 

ivw R(v) = 1 e dF(w) 
n 

where 

n=  {u, - c Q < u < c a }  

in the continuous parameter case, and 
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51 = {a, - n l h t  5 n l h t )  (3.1 3)  

in the discrete parameter case. 

F ( w )  is a nondecreasing bounded function defined for  all w in 0. 

F(o) has the following form 

In both cases the spectral distribution function 

Now in general 

(3.14) 

The function Fac(w)  is absolutely continuous and is the integral of a nonnegative 

function f(o) called the spectral  density function of the t ime se r i e s  

dF  (0) = f(o) dw (3.1 5) 
ac  

The function F (w) is a step function 
d 

(3 .16)  

where J ( w ) ,  the spectral  jump function, is given by 

J ( w )  = F ( w +  0) - F(w-0) (3 .17)  

Finally F s c ( w )  is a singular continuous function which w e  shall assume is always 

zero. W e  therefore have 

(3 .18)  

where the summation is over all frequencies uj such that w .  2 w and J ( w j ) > O  

and it is assumed that in any finite interval of the real line there  a r e  only a finite 

number of points w for which J ( w )  > 0. Also f(o) is assumed to  be continuous 

everywhere except for a f in i te  number of points where it has finite left- and right- 

handlimits. If ( 3 . 1 8 )  holds with these conditions we say that the time se r i e s  has 

J 
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a mixed spectrum; if the spectral  jump function vanishes for  all 

has a continuous spectrum; if the spectral density function vanishes everywher 

it has  a discrete spectrum. 

w e  say it 

J ( w )  accounts for  all lines in the spectrum, that is the components in 

the spectrum due to signals m(t) of given frequency and power, f (w)  represents the 

background noise Y(t). At zero frequency both J( 0) and f( 0) may be nonzero. 

J(0) # 0 there is a signal of zero frequency, that is a dc component, present. 

One of the reasons for separating the signal and noise components is because 

(3. 5) implies that 

If 

Ry(v) ++ 0 as v -+ 00 (3.1 9) 

which cannot be fulfilled for  a single sinewave since the autocovariance func- 

tion of C is distributed uniformly over the interval 

0 4 b, is given by 

cos (o t + b  ), where 6 
k k k  k 

k 

1 2  
- c cos vu  2 k  k (3.20) 

which does not satisfy (3. 19). 

Before concluding this sectioii We must  point out a very important 

property of R(v) and f(o). 

and since it can be proved from ( 3 . 6 )  that R(v) is a positive definite func- 

tion, - that is 

These functions form a Fourier  transform pair, 

(3.21) 

c } of arbi t rary length k and any points 

v in the set  { 0, f At, f 2At,. . .}  with the equality sign holding only 
l"." k 

for any complex vectors { c 

1'"" k 
V 

f o r  zero  vectors, it follows from a theorem of Bochner that the spectral  den- 

sity function f(o)  is nonnegative 

f(o) 2 0 (3.22) 

for all o in  0. 
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3 . 3  Important Special Cases 

F o r  discrete-parameter time ser ies  with a mixed spectrum whose 

spectral density function satisfies 

it may be shown that the process can be written in the form 

(3 .23)  

i to,_ 00 

(3 .24)  

for suitable sequences of frequencies { w } , constants { C ,} and uncorrelated 

random variables { Ak} and {q (a )} . This structure includes a s  special cases 

the scheme of moving averages and the scheme of hidden periodicities cor- 

responding to the vanishing of the first and second summations respectively. 

k S 

Another important structure for a time ser ies  a r i ses  i f  it satisfies 

an autoregressive scheme of order  p 
P 

(3 .25)  

where the a ' s  a r e  constants and c( t )  is a white noise process. 

that the spectral density function of such a process is 

It may be shown 

2 
m 

(3 .26)  

where q 

random walk  which satisfies 

is the variance of the c(t) .  An example of such a process is the 
c 
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- .  

X(t) - X(t-1) = €(t) 

with 

(3.27) 

(3.28) 

Autoregressive schemes always correspond to processes with an absolutely 

continuous spectrum. 

3 . 4  Regression Analysis and Spectral Analysis 

We wish to describe two possible approaches to  estimating the signal 

component m(t) and the noise component Y(t) of (3.1). 

First :  we determine the trend m(t) directly from the sample se r i e s  

by choosing the unknown constants in the l inear combination ( 3 . 2 )  to give a 

least squares f i t  to the sample series. 

this way is taken to be an estimate m (t) of the t rue trend m(t). N 
mination of m (t) in this manner is known a s  regression analysis and it is 

a well-known procedure. 

the sample ser ies  X(t) by subtracting out the estimated trend m (t) and w e  

a r e  ready to carry out a spectral  analysis of the residual s e r i e s  which we 

assume is now free of trends, in other words, its spectrum is continuous. 

This analysis produces then an estimate of the t rue  spectral  density function 

f(4. 

The linear combination arrived at in 

The deter- 

N 
To complete the analysis we approximately detrend 

N 

The other approach refer red  to  above is to ca r ry  out a spectral  anal- 

ys i s  of the sample series as if it were free of trends. Doing this produces 

what we call the truncated spectral  estimate. We  then use methods, which 

a r e  developed below, fo r  separating the signal and noise components in the 
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truncated spectral estimate. Of course, if the time se r i e s  has a continuous 

spectrum the truncated spectral estimate w i l l  itself be an estimate of the t rue spec- 

t r a l  density function. This is the approach we shall adopt for  our analysis. It has 
the great advantage that it requires l e s s  a pr ior i  knowledge about the signal 

than is required f o r  the preliminary regression analysis in the f i rs t  approach. 

Before we make any estimate we must define what we mean by a good 

estimate, and this is done in the next section. 

3.5 Figures of Merit for Estimates 

We shall consider only figures of meri t  based on the mean-square 

e r r o r  of the estimate from the t rue value. 

interested in estimating by means of an estimate f (0) formed from a sample 

{X(t), t = A t ,  2At ,  . . .,"At} of the time ser ies .  (The same considerations 

w i l l  hold for functions other than the spectral  density function. ) The mean- 

square e r r o r  of f (a) is defined to be 

Suppose f(w) is the function we a r e  

N 

N 

(3.29) 

This expression clearly depends on the point a. 

be written a s  the sum of two t e rms  

It is easily shown that it may 

where the variance and bias a r e  defined by 

(3.30) 

r 
bias L N  ~ f (w)] = E[fN(a)]-f(a) 

(3.31) 

(3.32) 
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Thus a good estimate in the mean-square sense w i l l  minimize the 

effects of variance and bias on the e r ro r  at all points a. 

unbiased estimates (where the bias is zero at  all points) a r e  not always the 

best and that it is better to divide the e r r o r  up into the two types. The dif- 

ficulty of having the e r r o r  depend on the point of evaluation may be removed 

by taking other cr i ter ia  such a s  the mean-square integrated e r r o r  

It w i l l  be found that 

or  the mean-square maximum e r r o r  

(3.33) 

(3.34) 

both of which a r e  independent of 0. Of course 

(3 .35)  

and an upperbound for  ( 3 . 3 4 )  is given by 

The mean-square and mean-square integrated e r r o r s  a r e  the most 

easily handled mathematically; however the most useful criterion for  our 

purposes is the mean-square maximum e r r o r  since this automatically gives us  

satisfactory confidence bands for good spectral density estimates. This follow: 

from the Chebyshev-type inequality 

(3.37) 
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since a good estimate in the mean-square maximum e r r o r  sense means that 

the right-hand s i d e  is a small  multiple of l / €  . 2 

3. 6 Covariance and Spectral Averages 

The dual  concepts of covariance andspectral averages a r e  important 

because the finite length of our sample makes it unrealistic to attempt to esti- 

mate the true autocovariance or  spectral  density function at a point. 

we shall obtain estimates of these quantities which a r e  averages of the t rue 

quantities over a domain which depends on the length of the sample. 

Rather, 

To form a spectral average we s ta r t  with a well behaved function A(w) 

(for example an infinitely differentiable function of compact support o r  a simplc 

function) defined on 0 the domain of definition of f(o). Then instead of the 

function f(w), which we have agreed it is unreasonable to expect to estimate, 

we consider T the generalized function or distribution (in the sense of Laurent 

Schwarz) corresponding to the function f. 

the function A(w)  is then defined to be the effect of T on A(. ). 

f 
The spectral  average generated by 

Thus we have 
f 

For  example if  we take 

then Tf(A) = F a 

(3.38) 

(3.39) 

(0 ) the spectral  distribution function evaluated a t  oo. On the 
0 

other hand we may take A(w) to  be sharply peaked at  0 and small  elsewhere 

in which case T (A) is looked on a s  the nearest w e  can get to assigning a 

value at wo to the generalized function T o r  in other words to finding f(wo).  

0 

f 

f’ 
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Since f(o) and R(v) fo rm a Fourier transform pair  we  have 

Using this in (3.38) we obtain 

where a(v) is the Fourier transform of A(w) 

A@) dw 
1 - ivw a(v) = - J e 
2n sz 

which w e  shall call a covariance window. 

the distribution T 

But the right-hand side of (3.41 

applied to the function a(v), so that every spectral ave: R 
may also be regarded as a covariance average 

having their  corresponding windows related through (3.42). 

seen at  once that there w i i i  be inherent limitations on our ability to obtain 

simultaneously satisfactory estimates of f ( . )  and R( . )  at a point in their  r 

spective domains. Fo r  example in the extreme case where A(o) = 6 (w - w 

we have a(v) = e so that while T,(A) = f(oo), the value of f at wo,we 

From (3.43) 

- ivwo ( 

- i v o o  1 

~ ~ ( a )  = Jv e 

a point. 

R(v) dv which in no way approximates the value of R 

is not a function 
- i v o o  

In fact T (a) is not an observable since e R 
compact support, so that we can never obtain f ( - )  at  a point in practice us 

covariance averages. However, we do hope to  approximate the value of f 

at a point w by means of covariance averages with a(-  ) chosen in such a Y 

that A(.)  is sharply spiked at oo. This produces then a spectral  average ( 

f( .  ) over a narrowband of frequencies centered about 0 . 

0 

0 
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An important measure of the shape of a spectral  window A(. ) (the 

same considerations hold for covariance windows) is its bandwidth (A) defined 

(3 .44)  

The bandwidth is thus simply the width of a window of height equal to the maxi- 

mum height of the window A ( - )  and of equal area.  

3 . 7  Consistency, Bias and Variance of Estimates 

For simplicity w e  confine ourselves to estimates f (a) of thespectral  N 
density function f(w) formed from the sample {X(t), t = A t , .  . . ,"At} of the 

process {X(t), t i n T )  . 
for the bias and variance of estimates of the type we a r e  interested in. How- 

ever, simple expressions a r e  known for  the asymptotic form of these quantitier 

which w i l l  now be defined. By asymptotic we mean in the limit as N -r", wheri 

N = "At. 

Except in simple cases no expressions have been found 

An estimate f (w) of f (w)  is said to be consistent in quadratic mean if  N 

2 
lim Elf  (0) - f ( w ) l  = 0 N N-." 

It is asymptotically unbiased if  

(3.45) 

(3 .46)  

It is easily shown that a consistent estimate is asymptotically unbiased. 

We may be interested in the rate  of convergence in (3 .45 )  and (3 .46 ) ,  

We say an estimate is consistent and this leads us  to  the following definitions. 
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2a 2 of o rde r  N with asymptotic variance a i f  

2a 2 2  l im N E l fN-  E f N )  = a  
N + m  

and asymptotically unbiased of order  N" with asymptotic bias 6 i f  

( 3 . 4 7 )  

( 3 . 4 8 )  

3 . 8  Window Generating Functions and Estimates of the Autocovariance 
and Spectral Density Functions 

A window generating function is a function k(x) satisfying the following 

conditions : 

(1) k(x)  is bounded 

(ii) k(0) = 1 

(iii) k(x) = k ( - x )  

(iv) k(x) = 0 for 1x1 > 1 ( 3 . 4 9 )  

Such functions will be useful in forming our estimates of the spectral  density 

function. However, first. of all w e  form our estimate of the autocovariance 

function. 

A s  our estimate of the autocovariance function w e  shall always take 

the sample autocovariance function defined by 

N' -v' 

t' =1 [h X(t) X(t+v) for v in{ 0, A t , .  . . , (N' - 1 ) A t )  

f o r  v in{ - A t , .  . . , - (N' - l)At} 

otherwise. ( 3 .  50) 

A possible estimate of the spectral  density function is the sample spectral  den- 

sity function o r  periodogram defined by 
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( 3 .  51)  

Inverting (3 .  51) w e  obtain 

i vu  
f (u ,P ,N)  dw ( 3 .  52) N RN(v) = e 

S A  

and it is easily shown that ( 3 .  51) may be written in the more  familiar form 

( 3 . 5 3 )  

where t runs over { A t , .  . . , N' At} . 
consistent estimate of the spectral density function. 

However it is we l l  known that ( 3 .  51)  is not a 

By means of window generating functions we shall generate estimates 

of the spectral density function which a r e  consistent. 

truncation point M 5 V, which is of course a multiple of A t ,  and w e  define the 

truncated spectral estimate by 

We first choose a 

( 3 . 5 4 )  

in which the summation is chopped off for all I vl>M because of the properties 

of k( -  ). W e  shall now show that this is a spectral  average of the periodogram. 

W e  define the central spectral window as 

( 3 .  55) 

which of course w e  can invert to obtain a formula for k (-&) as follows: 
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dX ivX k ( 5 )  = 1 K(X,O,M) e 
A 

(3.56)  

where A is the same set as 0 ,  that is 

A = { X ,  - n / A t  5 X S  nlh t}  (3 .57)  

in the case w e  a r e  especially interested in. 

single peak at X = 0 while K(X, w, M) defined as 

We note that K(A, 0 ,  Nl)  has a 

K(X, a, M) = 1 / 2  [K(X + w , O ,  M)+K(A - w, 0, M$ (3.58)  

has peaks at h = f w. Condition (ii) of ( 3 . 4 9 )  guarantees that 

f K(X, 0, M) dX = 1 (3 .59  
A 

It is now easily verified that 

fN(a, K, M) = J K  (A, 0, M) fN(X,  P , N )  dA (3 .60 
A 

so  that o u r  truncated spectral  estimate is a spectral  average of the period- 

ogram viewed through the spectral  window K (A, w , M) which satisfies ( 3 .  59) 

and looks l ike 
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We next investigate various quantities associated with windows. Fo r  

a central spectral window we define the peak height to  be K (0, 0 ,  M) which is 

given from ( 3 .  55) by  

M' 
(3 .61)  

which we shall show later is approximately proportional to M. 

constant of proportionality K the peak height factor so that 

We call the 

K(O,O,M)- K M  ( 3 . 6 2 )  

In  fact a theorem below shows that 

(3 .63)  K(0,  0, M) = K M  + 0 (M - ( p  + 1 ) )  

where p is a non-negative integer depending on the smoothness of the covariance 

window generator k( . )  and 

k(x) dx 1 K = -  J1 2n 
- 1  

The bandwidth /3 of a central spectral  window is defined to be 

and from ( 3 . 5 9 )  and ( 3 . 6 2 )  this is given by 

(3 .64)  

(3 .65)  

(3 .66)  

so that for a fixed window with varying truncation point the bandwidths of the 

estimates a re  approximately inversely proportional to their  truncation points. 

We now look at  an asymptotic formula fo r  the variance of our  estimate if  it is 

used to obtain an estimate of the spectral  density function of a normal noise 
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process with zero spectral  jump function. The result  (3.67) which w e  now quote 

follows fromTheorem 5, and (3.68) follows from Theorem 3 below. 

0 < 0 < r/At w e  have, for  large N 

F o r  

1 2 - f f2 (X)  K (A, a, M) dX var[f,(w, K, M)] 
' A  

(3.67) 

(3.68) 

and the same holds t rue for  0 = 0 or 0 = r / A t  if w e  multiply the right-hand 

sides by a factor of 2. Thus for  a normal noise process with fixed window 

and varying truncation point we see  from (3.68) that the variance of our 

estimate is approximately proportional to the truncation point M. From 

this we can take the product of the variance and the bandwidth of theestimate 

and obtain approximately 

- .  
N K (3.69) 

This expression is independent of the truncation point M and w e  define the 

part  of it which depends on the window to be the variance-bandwidth factor 

VBW(' ) thus 

(3.70) 
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F o r  some time ser ies ,  such as those with a mixed spectrum, we can- 

not find a t rue spectral density function f (  w ). 

obtain an expected spectral  estimate defined as 

However, we may always 

f (a, K, M) = lim E ifN(”. K ,  M)] N -boo L 

(3.71) 

If X( . )  is a stationary process we then have from (3.71) and Theorem 5 

(3.72) 

which is a spectral average of the t r u e  spectral  density function through 

the window K(A, 0, M). 

generator to be the Fourier transform of the covariance window generator 

For completeness we define the spectral  window 

so of course we also have 

00 ixX dA k(x) = K(X) e 
-00 

We w i s h  to find out how K(A) and K(X, 

a formula due to Poisson. The result is 

, M )  a r e  related. 

K(A, 0, M) M K (MA) 

(3.73) 

(3.74) 

This follows from 

(3.75) 

o r  more precisely, provided K(w) = 0 (0 ) f o r  some positive Q,  we have 
m 

(3.76) 
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3.9 Parzenls Kernel, Tukeyls Kernel and the Periodogram 

We now define two frequently used k(. ) due to Parzen  and Tukey, and 

We list also the values of sev- we explain what is meant by the periodogram. 

eral quantities associated with these kernels and the periodogram. 

F i rs t ,  Parzen 's  kernel is defined by 

Its spectral  window generator is 

Its peak height factor is 

K = 3/8n 

and its central  spectral window is 

3 A t  (sin M f . ~ A t / 4 f  

XAt/4 
K(A,O, M) = - 3 

8wM 

The integral 

JK k2(x) dx = - 15' - - 0.539 280 
-m 

and the variance-bandwidth factor is given by 

151n 
105 VBW(k) = - = 4.52 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 
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Parzen's kernel has  two advantages over Tukey's, namely it always 

gives r i s e  to nonnegative. estimates of the spectral  density function of the 

process, and its variance bandwidth factor is almost 570 smaller. To see  

this we write down Tukey's kernel which is given by 

Finally we must define the periodogram which is the estimate which arises 

f rom the particularly simple kernel 

( 3 . 8 9 )  

. 

fo r  1x1 s 1 1: o therwis e 
k(x) = 
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ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT 

for 1x1 1 1 
2 - (1 + cos 7rx) 

0 for 1x1 > 1 ( 3 . 8 3 )  
k(x) = 

for which 
c1 
L sin A 

h 
. -  1 7T 

K(A) = - 27r 2 2 
7T - A  

A t  
27r 

K z -  

( 3 . 8 4 )  

( 3 . 8 5 )  

1 1 7T 
2 s in  (MI+?) X A t  s in  (M'+-)(A+z)At s in  

+ 2 

s in  -(A+ n/M)At 
+ 

1 
2 

s in  -(A- n / M )  A t  1 
2 

K(A, 0 , M )  = - 
sin $ A t  

( 3 . 8 6 )  I I 
r" k2(x) dx = 3 / 4  

J 
-a2 I and 

VBW(k) = 47r 

( 3 . 8 7 )  

( 3 . 8 8 )  



- .  

Corresponding to this, which is sometimes known as Bartlett 's o r  Dirichlet's 

kernel, we have 

1 sinA 
K(A) = ; 

K =  - -  - 0.318 
7r 

1 
A t  2 s in  (MI+ -) A A t  

1 sin - A A t  
2 

K(A, 0, M) = - 
2nM' 

2 r" k (x) dx = 2 
J 

-03 

and 

VBW(k) = 2n = 6.28 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

3 . 1 0  Theorems on Estimates and Windows for Stationary Time Series 

We pause to define what we mean by a smooth covariance window 

generator k(.). W e  say k(.) is p-derivable on [a, b] i f  

(1) at each point of [a, b] the first p derivatives exist, and the first 

( 2 )  there is at  least one point of (a, b) at which g ('+l)(x) does not 

p + 3  one-sided derivatives k ( x 4  and k(x -) exist and are bounded; 

exist; 

( 3 )  at all but a finite set of points Z i n  (a, b) the first p + 3 derivatives 
of k(.) exist and are bounded and integrable. 

The set Z is called the break point set. 

on [a ,  b] i f ,  when we extend k(.) by making i t  zero outside this interval, for 

every positive k(-)  is p-derivable on [a+,  b+c] and Z is the break point 

se t  i n  ( a - c ,  b+c). F o r  Parzen 's  kernel p =  2 ,  Z = {-1, - -  0, - 11 and i t  

k(.) is said to be truncated p-derivable 

1 1 
2 , 2 '  
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is truncated 2-derivable. 

cated 1 -derivable. 

Tukey's kernel has p = 1, Z = { -1, 13 and it is trun- 

W e  have the following theorem about spectral  averages of a smooth 

spectral density function f ( w )  for any stationary time series. 

Theorem 1. Given any spectral density function f ( w )  with bounded derivatives 
th up to the n , and given any truncated p-derivable covariance window generator 

I I  1 (4 )  (4) f ( A )  K(A, w , M )  dx= k(0) f(o) - - k"(0)f (w) +y k (0) f  (a)+. . . 
4! M 

2 A 2! M 

+ RM 

where the remainder 

O(M-(p+l)log e M)if  n>  p + l  

( 3 . 9 5 )  

( 3 . 9 6 )  

Before stating the next theorem we need two more  definitions. The 

characteristic exTonent r of a covariance window generator is defined to 

be the largest  number r such that 

(3 .97)  kCrl = lim 
x- 0 

1 - k(x) 

exists, and is finite and nonzero. 

Another way of stating (3 .97)  is that in a neighborhood of the origin 

kLrl is called the characterist ic coefficient. 

r 
k(x) = 1 - kLr' 1x1' + o(x  ) (3 .98)  
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2 

4 
7r 

For  Parzen ' s  and Tukey's kernel r =  2, and kLr' = 6 and - (= 2.46) respecti 

W e  a r e  now in a position to state another theorem of a similar kind 

to Theorem 1. It is 

Theorem 2. Given (1) a covariance window generator k(.), bounded on [ -1 , 

and zero elsewhere; (2 )  a discrete-time stationary time ser ies  with spectra 

density function f ( w )  on SI and autocovariance function R(v) satisfying 

generalized spectral  derivative is defined as th where the q 

( 3 .  

( 3 .  

We now turn to a theorem about a more complicated expression thz 

W e  first define for  two truncatio the spectral  average of (3.95) and (3.100). 

points M. 5 M .  the mean truncation point as 
1 J  

and the truncation ratio as 
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In the statement of the theorem we drop the subscripts and write simply M 

and p. 

Theorem 3. 

truncated p -derivable covariance window generator k(-); (3) a spectral  density 

function f(A) with derivatives through the fourth existing and continuous on A; 
then if  p' 1 we have for the integral 

Given (1) positive integers M. and M .  with 1~ held constant; ( 2 )  a 
1 J 

(3 .104)  
2 

I = 4a r f (x) KCX,w,M.) KCX,w,M.)dh 
1 J A 

the approximations 

1 
M 
- 7r << 0 << - - 1 (a) for  - M A t  

-1 
[ = Mf2(o) r p  k(p z) k(pz) dz + M - l [ f ( w )  f l ' ( w )  + f l ( w )  f r  (w)] sp k1(p-'Z) kt(pz) dz 

-P -P 

+ o ( M - ~ )  +O(M -(p + 1)) (3.105) 

a 1 
A t  M (in fact for 0 s w << - - - )  

1 
M for  0~ w 5 0(-) (b) 

2 -1 I Mf (w) T p  k(p z) k(pz) (1 + C O S  2Mwz) dz 

-P 
I 

t ' M - l  [ f ( ~ ) f ~ l ( w ) + f ' ( w ) f ' ( ~ ) ]  J'k'(p-'z) k ( p z )  dz 
-U 

-1 f ( w ) f l ( w )  [ p k'(p-lz)kl(pz)cos 2M w 2  dz 

' c1  w 
+ M  

-p + 1 ) )  + o ( M - ~ )  + O(M (3.106) 
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2 -1 ?r 
I = Mf (w) 1' k(p ) k(pZ) (1 + C O S  2 M ( ~ - w )  z) dz 

-P 

(3 .  
+ O  (M-3)  + 0 (M -(p + 1)) 

-3  
Note that f o r  Parzen 's  kernel the remainder is of course O(M 

Tukey's it is O(M 

) and for 
-2  

). In case (b) i f  f (w)  does not vary much near the origin 

we can simplify (3.106) by expanding f(o) about the origin to obtain the 

simpler result  

2 I = M [ f (0) + w2 f(0) f"(O)]  Jp  k(I- 'z)  k(pz)(l +cos  2M wz) dz 
-P 

-(p+ +M-'f(O)f''(O) fP k'(c(-lz) k '(pz)(l+cos 2Moz) ~ z + O ( M - ~ ) + O ( M  
-P 

0 7) 

(3.108) 

In case (c)  we  expand about ?r/at and in (3.108) we replace 0 by n/At and 

w by T l A t  - w .  
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3.11 Theorems on Estimates for Normal Time Series 

The first  two theorems a r e  about the noise process only. We state 

f i r s t  a theorem about the limiting value as  T+oo of the expectation of a trun- 

cated spectral estimate and of the covariance of two such estimates. 

that all the following theorems a r e  true only if the noise process is a normal 

process. 

Note 

Theorem 4. 

eter normal, zero -mean, stationary, ergodic time ser ies  with absolutely 

summable autocovariance function R(v) and spectral  density function f (LJ) on 

51. Then for fixed v and w 

Suppose Y(t), t =  A t , .  . . , N'Ot is a sample from a discrete param- 

lim E[RN(v)] = R(v) 
N-.a 

(3.109) 

and 

co 
1i.m N COV [ R  (v), R (w)] = \ [ R ( s + v ) R ( s + w ) + R ( s + v ) R ( s - w ) ]  N - + m  N N L 

2 
= 47r J cos vh cos wh f A )  dA 

A 
(3.110) 

We have a similar theorem for  the truncated spectral  estimate rather than the 

estimate of the autocovariance function. 

Theorem 5 .  

eter ,  normal, zero-mean, stationary, ergodic time ser ies  with absolutely 

summable autocovariance function R(v). If the spectral  density function of 

this se r ies  defined on sb is f ( w ) ,  then for every function and parameter fixed 

except N 

Suppose Y(t), t =  At,. . . , Nlnt is a sample from a discrete param- 
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and 

(3. 

(3. 

Combining (3.111) and ( 3 .  95) o r  ( 3 .  100) we have asymptotic estimates for t 

bias of the truncated spectral estimate. 

Corollary 5. 

3 IvR2(v)1 < 03, then a s  N 4 0 3  we have 
V 

If in addition to the conditions of Theorem 5 we assume that 

2 -1 N cov [RN(v),RN(w)l = 47r J COS VA C O S  W A  f (x)dx  -k o ( N  
A 

) ( 3 .  

We now state some theorems for processes with mixed spectra 

analogous to Theorems 4 and 5. The first two wi l l  be about processes with 

a signal having a single harmonic component, the following two wil l  genera: 

these results to signals having a finite member of such terms.  

Theorem 6. 

s e r i e s  X(t) = C cos (tWs + b )  + Y(t) t =  A t , .  . . , N At where 

Suppose we a r e  given a sample of N’ observations from the ti1 

(i) 

(ii 

and 4 a r e  fixed, w # 0 o r  r / A t  
S 

Y(t) is a stationary, ergodic, normal, zero-mean time ser ies  with ac 
00 

covariance function R(v) ,  such that I v R(v) 1 <W and spectral densit* 
..I -30 ._ 

function f(w)  on r C .  
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Then for fixed v and w, as N-co 

1 2  
E[RN(v)] = C cos vw + R(v) + O(N-') (3.114) S 

and 

2 
N cov [ R ~ v ) ,  RN(w)]= 4~ COS vw COS ww C f ( w  )+4nJ cos vA cos wXf2()c)d4 S S S 

A 

+ O(N- ' )  (3.115) 

Theorem 7. 

N + m  

If the conditions on X(t) a r e  the same as in Theorem 6, then as 

and 

W e  now extend Theorems 6 and 7 to the case of many sinewaves in noise. 

include in these results the special case of a constant (i. e . ,  zero frequency) 

term,  and an on-off (i. e. , frequency-) term. 

is 

We 

n The generalization of Theorem 6 
At 

Theorem 8. Suppose we are given a sample of N'  observations from the time 
a 

series X(t)  = c' C .  cos (tw. t =  A t . .  . , . N' At where 
j = o  -3 

a. and 4. a r e  fixed with C .  2 0, 0 = w < w. .  . . < W  (i) CjLJ < w  = n// \ t  a nd  
q-1-q 0 J 

bG= 0, 4, = o o r  8. 
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(ii) Y(t) is a stationary, ergodic, zero-mean, normal time ser ies  with auto- 

covariance function R(v), such that 

function f ( o )  on 0. 

a3 I vR(v) I < a3 and spectral density 
V I =  -00 

Then f o r  fixed integers v and w, as N + c o  

j= 1 

and 
(4-1 

c j J j  J 
2 N cov[RN(v), RN(w)] = 8aCo 2 f ( o ) + h  COS vw cos ww. C f(o.) 

j =  1 

v+w 2 7 r  2 + (-1) 87r C f(E) +47r cos VX cos WX f (A)  dx +O(N-')  
A 

q 

(3.119) 
and the generalization of Theorem 7 is 

Theorem 9. Suppose X(t) is as in Theorem 8. Then as N+a3 
q-1 

and 
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4 .  COMPUTATIONAL PROCEDURES FOR SPECTRAL ESTIMATION 

4.1 Comwtation of the Truncated SDectral Estimate 

We are given a sample {X(t), t = At, . . . , N h t }  . We compute t: 

truncated spectral  estimate as follows: 

Step 1 

Choose a truncation point M, where M is an integer-valued funct 

of N, such that M/Nis  in the order  of 0.1 

Step 2 
1 

For  each v in {O,At, 2At, . . . , M At} compute the sample aut< 

covariance function R (v) where 
, $-J’ N 

RN(v) = -r kX(t)  X(t +v) N 
t‘= 1 

Do this by the procedure given in Fig. 4 for computing inner products. 

Step 3 

M suchtha t  O<M < M  < M  = N 1’ 3 1 2 3  Choose three numbers M 

and c a r r y  out the remaining steps fer  each value NI. ,  i = 1,2, 3. 

Step 4 

1 

Choose a number Q, where Q is to be the number of subinterval 

into which we wish to divide the interval [O,a /At l  on which the truncated 

spectral  estimate is defined. 

Step 5 
a - compute the truncated spectral  At  QAt’ Q a t ’  * ’ ’ 

a 2n For  w = 0, - - 
estimate I 

Mi 
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2 PROCEDURE C O V A R I A N C E ( N * M I L ~ ~ L Z ~ X ( )  I R ~ O ~ R ~ O ~ C I O ~ C T O ~ D ~ ~ D ~ O D ~ ~ S  
2 COMMENT T H I S  PROCFDURE COMPUTES THE AUTO AND CROSS C O R R E L A T I O N  FUNC- 
2 T I O N S ,  Rl(I)rRZ(I)rCI(I) AND C T f I l r  FOR 1=192ro. . ,M+l .  THE FUNCTION.  
2 AT L A G  ZERO IS STORED A T  I s l e  THE F U N C T I O N  A T  L A G  M IS S T O R € D  AT 
2 I a M + l .  THE T I M F  SFRIES ARE O F  EQUAL L E N G T H  N AND B O T H  A R E  STORED I N  
2 THE ARRAY Y O *  ONE B E G I N N I N G  AT L l r  THE OTHER AT L2. THE AUTO-CORR 
7- FUNCTIONS ARE N O R M A L I Z E D  TO H A V E  A V A L U E  1 A T  THE O R I G I N  AND THE 
2 CROSS C O R R E L A T I O N S  ARF A L S O  C O N S I S T E N T L Y  N O R M A L I Z E D .  T H E  NORMAL- 

I Z I N G  FACTORS ARE 0 1 9 0 2  AND 03. THE F U N C T I O N S  ARE ADDEO I N T O  THE 
ARRAYS R 1 0 r R Z O r C I O  AND C T O  TO ALLOW P O O L I N G  O F  COVARIANCES.  SUM* 

2 
2 
2 I N P R O D ( K ~ L ~ N I A O ~ B O )  1s AN E X T E R N A L  F U N C T I O N  E Q U I V A L E N T  T O  
2 'SUM=OoO* FOR I m ( O r l * N - l ) r  S U M = S U M + A ( K + I ) . B ( L + I I I  8 

2 I N T E G E R  I ~ . . ~ J . ~ ~ ~ K . . . ~ L . . . ~ M ~ ~ o ~ N ~ o o  I 
2 01 1 K P R O D ~ L l r L l r N r X O r X O ) S  
2 D 2  = I N p R O D ( L 2 r L 2 * N r X (  ) r X O ) S  
2 93 a S O R T ( D I o D 2 )  I 
2 FOR KU ( l * l m M + l )  S 

2 R l ( K K ) ~ R l ( K K ) + I N P R O D ( L l ~ L l + K K - l r N - K K + l ~ X O r X ~  ) ) / D l S  
2 R Z ( K K ) ~ R Z ( K K I + I N P R O D ( L 2 * L Z + K K - 1 r N - K K + l * X O ~ X (  ) ) / D Z S  
2 C I ( K K ) ~ C 1 ( K K ) + I N P R O D ( L l ~ L 2 + K K - l ~ N - K K + l ~ X ( ~ ~ X O ) / D 3 S  
2 C T ( K K ) ~ C ~ ( K K ~ + I N P R O D ( L 2 ~ ~ l + K K - l ~ N - K K + l r X ( ~ ~ X ~ ) ~ / D 3 8  

2 BCGIN 

2 B E G I N  

2 END I 
2 RETURN END 8 

Fig. 4 PL-ocedure Covariance (from Ref. 9 ) .  
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F o r  purposes of computation we rewrite (4.2) in the form 

M,' 

(4.3) 

The kernel k ( - )  will be Parzen's,  Tukey's o r  Bartlett 's kernel which a r e  

defined by Eqs. (3.77), (3.83) and (3.89) respectively of Sec. 3.9. The 

computation is carr ied out by means of the procedure given in Fig. 5 for 

computing finite Fourier transforms. 

Step 6 
7r - n 2n 

e N  1 e Q A t '  Qt A t  
Plot log f (a, K, M.) against log w for o = O ,  - T I . . . ,  

and interpolate linearly o r  otherwise between these points. 

4 . 2  Discussion of the Computation 

Step 1 

Large sample statistical theory fos, normal noise processes implies 
n that, fo r  0 < w <*T, Eq. ( 3 .  6 8 )  becomes 

( 4 . 4 )  
-00 

n with the added factor of 2 for a =  0 or - At F rom (4.4) we thus get 

(4.5) 
M. 

IlogefN(w, K J  Mi) - logef(w)) 5 2(< s" k 2 ( d  
-00 

and this gives u s  upper and lowerbounds, that is a confidence band, on the 

percentage e r r o r  of the truncated spectral estimate since (4.5) implies 
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The following table shows that only for M/N < - 1 is this e r r o r  of reasonable 

size: 

0.05 -0.3 

0.10 -0 .4  

0.20 -0.5 

0.40 -0.6 

0.9 

1.5 

therefore we should choose Mi no greater than 10% of N. 

tempted to choose M very much smaller than this to reduce the above variancc 

and percentage e r r o r  of the estimate, however, the smaller  M.  becomes the 

larger  is the bias of the estimate, which may be seen in the asymptotic case 

for normal processes by combining Eqs . (3.1 11) and (3.95) o r  (3.1 00) to show that 

the bias definedin(3.32) varies 1/M.. 

bias and variance contributions to the mean-square e r r o r  (3.29)  is a diffi- 

cult problem. 

M. to be of the order  of 10vo of N (up to40:'0, say), since values greater (lower) 

than this would increase the variance (bias) by an unreasonable amount. 

We might now be 

1 

The best  choice of M. to balance the 
1 1 

The result  of this discussion then is that we must choose 

1 

Step 2 

The choice of M in Step 1 greatly reduces the amount of computation 

necessary at this step since we need to compute R (v) at a maximum of 0 . 4  N' 
instead of N' points. Fo r  each of these computations w e  call on an external 

procedure for computing inner products. A good example is the "procedure 

covariance" given in Fig. 4, and another efficient method is due to  Stockham 

of MIT. 

N 
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We now discuss some of the properties of %(v) a s  opposed to other 

estimates of the autocovariance function. It is easily verified that 

(4.7) 

I so that i t s  bias is given by 

V bias [%(v,] = - 
N 

(4.8) 

which is nonzero. However it is obviously asymptotically unbiased since I 
l im bias [%(v)] = 0 

N-J 
(4.9) 

Also %(v) is a positive definite function, meaning that for  any k,  any set of 

complete numbers c. and any set  of real  numbers v. in {O, *At,  f 2At, . . . } 
i = 1 , 2 , .  . . , k we have 

1 1 

k k  
(4.10) - 1 1 ci c j  %(Vi - v . )  > 0 

J 
i=l  j=l 

This may be verified from the fact that 

1 :  1 
where 
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The above matrices a r e  of the singly infinite Toeplitz type. 

covariance function is a positive definite function as we remarked in (3.2 1) so 

that it seems a good idea to use estimates, like the sample autocovariance 

function, which have this property. We now show that the commonly used 

unbiased estimate 

The t rue auto- 

NI-v,' 
1. .I, 1- 

RNb)  = 11 1 X(t) X(t+v) 
t '= 1 

N -V 
(4 .13)  

is not positive definite. This follows at once by taking k=3; c =1, c =0 ,  

c =-1; v =At, v =2At,  v =3At and X(At)=l, X(2At)=O,X(3At)=l. Then 
3 1 2 3 .I. .1* 

R (0)=2/3,  R (At)=O, R (2At)=1/3 while Ri(O)=2/3,  R-"(At)=O, R"(2At)=1 N N N N N 
s o  that 

1 2 

(4.14) 
2 - -  - hk 2 

J J 3 

3 3  3 3  - 
c c .  %(Vi - v. )  = 3, i )_I ci c .  %(Vi - v. )  = - - 

i= 4 i l ;  J J i= l  J = I  

Parzen remarks,  however, that even R (v) does not give a good estimate of 

R(v) since it does not damp out to zero  for large v ( s  N). Nevertheless, its 

appropriately modified finite Fourier transform, in other words the truncated 

spectral  estimate, does give a reasonable estimate of the spectral density 

function. 

N 

We remark that the computation t ime for the sample autocovariance 
I 

function in Step 2 is proportional to M x N'. 

Step 3 

Since we cannot specify the best value of M to minimize the sum of 

the e r r o r s  due to bias and variance, and since later we wish to deal with case: 

where we have not only a continuous but also a discrete spectrum, we find it 

best in practice to compute the truncated spectral  estimate for several  values 

of the truncation point. 
1 

Suitable values are obtained by taking M to be an 
1 I 1  I 1 I l  

even integer between 0.05 N and 0.1 N, M i  = 2 M i  and M i  = 2M2. Then we 

have 

92 - ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 



< 0.1 0.05 <- M1 
N 

< 0.2 0.1 <- M2 
N 

< 0.4 0.2  <- M 3  N 

In graphing f (a, K, M.) it is useful to not,e that 
Mi N 1 

(4.15) 

(4.16) 

which is a monotonic function of M 

can easily be distinguished by observing their  heights at the origin. 

hence graphs for different values of M i’ i 

It  may happen that our estimates contain spurious cycles. 

be identified by applying them to the constant time series X(t) = 1 o r  more 

generally to other standard series with known spectral  density function. 

the estimate produces peaks other than the spike at the origin, we should be 

suspicious of such a peak i f  it occurs when our estimate is applied to  a time 

series with unknown spectral  density function. 

These can 

If 

Step 4 

The choice of Q depends on the method of interpolation that we use to 

join up the computed points on the graph of logefN(w,K, Mi). A sampling 

theorem tells us that if the truncation point is M. then f (a, K, Mi) can be 

recovered from its value at M. equally spaced points. 

necessarily be accomplished by linear interpolation so that ra ther  than taking 

Q = M. + 1 points and using a more complicated interpolation procedure, we 

prefer  to take Q = 2Mi o r  4 Mi. 

above, we take Q approximately equal to the greatest of these, and we make 

su re  that if there are any physically distinguished frequencies present then Q 

1 N 
I 

1 
However, this cannot 

1 

1 1 1 

1 

1 
In practice with the three values of M. chosen 

I 
is chosen so that these are multiples of the grid spacing - Q a t  
Q is chosen no la rger  is given in the discussion of Step 6. 

The reason whj 
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Step 5 

The computation time for  the truncated spectral  estimate of Step 5 is 

The calculation is carr ied out by the pro- found to be proportional to Q - M I .  

cedure (see Fig. 5 )  for evaluating finite Fourier  transforms due to Goertzel, 

which is quoted by Parzen under the name "procedure transform". 

ficient methods a r e  due to Cooley and Tukey, and also to Stockham of MIT. 

Other ef- 

Since the spectral  density function is always positive it is possibly 

desirable that we should t r y  to choose a k(-)  which gives rise always to positi\ 

estimates. It can be shown that Parzenfs  kernel has  this property, whilst 

Tukeyls does not. 

is necessary and sufficient that the corresponding spectral  window be positive 

that is for  all X we have 

Note that in order  for  an estimate to  be of positive type it 

K(X, 0 ,M) 2 0 (4.17 

Another advantage of Parzenls kernel over that of Tukeyls is that 

This may be both its variance and bandwidth-variance factor are smaller.  

seen by combining Eqs.(3.68), (3.82) and(3.88) for fixed M and N. 

Step 6 

Here w e  discuss questions about folding and resolution. A fundamen 

tal notion is that of the Nyquist o r  folding frequency which occurs i f  our samp 

series is really a sample f rom a continuous stochastic process. The truncatc 

spectral  estimate is a periodic function, with period 27r/At, which, however, 

is an even function so that its value in [O,a/At] wil l  determine it completely. 

To get an estimate of the t r u e  spectral  density function which of course is 

aperiodic we take the estimate to be equal to the truncated spectral estimate 

in [O,n/At] and zero elsewhere. 

frequencies differing by multiples of 27r/At indistinguishable and the net resul 

The effect of this periodicity is to make 
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Fig. 5 Procedure Tr.ansform (from R e f .  9) 
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is to fold over the true spectrum onto the interval [O, ?r/At] in the way 

described in  Sec.2. Thus we must either choose At so small  that the true 

spectral density function is also zero outside this interval o r  prefilter the data 

as we did in Sec. 2 ,  to remove these high frequency sections. 

In Sec.2 it was  also shown that the effect of finite data length is to 

blur the spectrum in an equivalent way to looking at  it through a spectral  

window of bandwidth proportional to l / N  which fo r  fixed ratio M/N is pro- 

portional to 1/M. Hence it is pointless to look for  resolution in an interval 

smaller than this, so that it would be pointless to choose Q la rger  than O(M'). 

Note that the bandwidth of the truncated spectral estimate is also proportional 

to 1/M, so that i t  is automatically of the right order. The discussion of Step 4 

gavea lower bound for  the choice of Q. 

The reason fo r  preferring the scale log w instead of w is because it e 
magnifies the low frequency part which we are particularly interested in. 

Plotting log f (w, K, M) instead of f (w, K, M) is advantageous because we have 

asymptotic confidence bands for this estimate in the case of normal noise as 

was noted in (4.6) in the discussion of Step 1. 

e N  N 

4.3 Correlation Analysis 

It may be preferred to compute estimates of the correlation function 

and its Fourier transform rather than the covariance function and the spectral  

density function. In this case the procedure is as follows. 

Step 1 

Choose a truncation point M which is an integer-valued function of 

N such  that M / N  is in  the order of 0 . 1 .  

Step 2 
I 

For  each v in { 0, At, .  . . , M At} compute N'X R(v) where %(v) is thc 

sample auto covariance function 
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%(VI = 4 'c X(t) X(t+v) 

tl= 1 

Do this by the subroutine given in Fig. 4 for  ,computing inner products. 

Step 3 
I 

For  v in { 0, At,. . . , M At} compute the sample autocorrelation 

function p (v) where N 

SteD 4 

(4.18) 

(4.19) 

Choose three numbers 0 < M  < M  < M  = M < N and ca r ry  out L e  1 2 3  
remaining steps fo r  each M i=l, 2,3. i' 

SteD 5 

Choose a number Q, where Q is the number of subintervals into which 

we divide the interval [O, 7r/At]. 

Step 6 

For w = 0, a/QAt, 2r/QAt, , . . , 7r/At compute the truncated normal- 

ized spectral  estimate + (w, K, M.) where N 1 
ial 

(4.20) 

which can also be written in  the form 



Step 7 

Plot log 6 (a, K, M.) against log a fo r  w = O ,  n/QAt, . . . , n/At and e N  1 e 
interpolate linearly o r  otherwise between these points. 

Discussion: the same considerations apply to the above computation 

as did to the autocovariance approach. 

viewed as a normalized version of the autocovariance approach. 

lent to replacing the sample ser ies  [x(t)D t =  At,. . . , N At] by the sample 

se r i e s  

The autocorrelation approach may be 

It is equiva- 
1 

and then carrying out the calculations for  the autocovariance approach on this 

normalized series. In a sense the vector which represents this realization of 

the process has unit length. 

4.4 Finding the Noise and Signal Components f rom the Truncated Spectral 
Estimate 

We must first assume that we know the frequencies of the signal 

components. In another paragraph we shall show how to estimate these from 

our  estimate if we do not know them a priori. 

We concentrate now on the case of a single sine waveof frequency w 

in noise with the additional assumption that as is no nearer  to 0 o r  7r/At than 

the bandwidth of the  widest spectral window in use. In other words 

S 

1 - a  >>- 
At s M  8 
7r - 1 

w >>- s M  (4.22) 

The subsequent theory will as before deal only with normal processes. 

Under these conditions we look at the truncated spectral  estimate at 

From Theorem 7 using Theorems 1 and 2 we easily the signal frequency w 

obtain 
S' 

98 - ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 



1 2  E [fN(w E ,K, M)] = 4 KC M f f (w  S )+O(M-') (4.23) 

and similarly f rom Theorem 7 and Theorem 3(a) w e  obtain 

,K, Mi), fN(Ws,K, Mj)l = TM.. 2 K 2 2  C f (o  )+M. .I. .f 2 (o )+O(M;.') (4.24) 
1J S 1J 1J  S 1J  

We now use (4.23) to separate the signal and noise components. We 

look on this as an equation in which the estimates are a l inear function of the 

truncation point with an e r r o r  term. 

regression line with slope - KC 

f(os), where K=- for  Parzents  kernel and K =- for  Tukey's kernel. 

by finding this regression line we can determine C2 and f (o  ) at once. 

problem of fitting a regression line with correlated variables is well known 

and we merely outline its solution here. 

mates corresponding to the truncation points M <M 

Thus the estimates will lie about a 

- axis given by N 
1 2  
4 and intercept on the f 

1 3 Hence 

The 
87r 27r 

S 

Suppose we have m spectral  esti- 

< Mm. W r i t e  1 2"' 

(4.26 

From (4.24) we obtain the approximate covariance matrix 

f which has (i, j) element approximately given by N 

of the estimates 
th c 

-1 2 2 2  2 1 =$ N M.. K C f(o ) + N-'M..I..f (os) 
1J  . s  1J  1J 1j 

(4.27) 

Then from (4.23) we have approximately 

99 
- ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 



(4.28) 

f rom which it follows that the best linear unbiased estimates for C2 and f(ws) 

a r e  given by 

-1 -1 
I . ; . .  

-1 
I P 

= [M1,0 L 1,o ] M1,OL fN (4.2 9) 

with covariance matrix 
-1 

1 

[Ml. 0 r1 M1,0] (4.30) 

A nasty complication is that through 1 the expression (4.29) for the estimates 

C This 

means that (4.29) must be solved iteratively. 

iteration a re  C =O and f (0 ) = 1 in 

a re  then used at each subsequent step. 

2 
N N s  S 

and f (W ) depend on the true values C2 and f(w ) of these quantities. 

Suitable starting values for the 

,the latest estimates of these quantities c 2 
N N s  

We remark that even if  we use a kernel which will  produce a non- 

negative estimate f (w 

f (w ) wil l  be non-negative. We should note that we might also consider N s  
a direct least squares o r  Gauss Markov estimate of the signal. 

method proposed above, even though it requires considerably more computa- 

tion, is applicable even i f  the signal frequency is not precisely known o r  i f  it 

is a spectral  peak of very narrow bandwidth rather than a spectral line. In 

addition the variance of our method is asymptotically equal to that of these 

alternative estimates. 

K,N), there is no guarantee that the estimates CN and N s8 

However, the 
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If there is no signal present our regression line should have zero 

slope as is seen f rom (4.23)' and this test  may be used in deciding i f  we have 

chosen suitable truncation points for our estimates. If there is more than one 

sine .wave in the signal, and these have frequencies between 0 and n /At  sepa- 

rated according to the conditions 

1 
0 ' W  >>- s S-1 M ' s+l  s M 

1 - a  >>- (4.31) 

then exactly the same equations apply for the determination of  w as  in the 

single sinewave case, in  other words  the signals a t  frequencies other than w 

have a negligible effect on the estimates at  w 

choose an estimate with a sufficiently narrow bandwidth to satisfy (4.31)' but 

only at  the expense of increased variance o r  length of sample. 

S 

S 
Of course, we can always 

S' 

For the constant te rm at zero frequency with 

1 >> - 
W1 M 

we obtain 

(O,K,M) = KC 2 M + f(0) + 0(Mm2)  l o  
instead of (4.23), arid iii piace of (4.24) we have 

(O,K, Mi), fN(O,K, M.)] = a t M i j  8 a  2 K 2 2  C f(0)+2M. .I. .f 2 (O)+O(M:.') 
J 0 1J 1J 1J 

Similarly for the on-off te rm o f  frequency r / A t  with 

1 
- 0  >>- 

At q-1 M 
a - 

we obtain 

E [ f N (L At '  K,M) M +f(-&) +O(M-2)  

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4 .36)  

N cov f (L [ N At' 
8 n  2 2 2 7  2 a  -1 ) , f  (L K,M.) =- M . . K  C f(-)+2M..I..f ( z ) + O ( M . .  ) 

. N At' J 1 At 1J 9 At 1J 1J 1J 
(4.37) 
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which a r e  of the same form as  (4.23) and (4.24). Of course, the regression 

procedure is the same in all these cases as in the case of a single sine wave 

with the change of a few constants in the equations. 

method rests on the fact that the part of the spectral estimate due to the signal 

increases linearly with M, while the noise component is independent of M. 

The simplicity of the 

When a component due to a signal is very strong o r  very close in 

frequency to another component,the approximations in the proof of Theorem 9 

will  not be valid. In these instances we may either look more carefully at the 

arguments leading to (4.23) and (4.24), in which case we can develop regressio: 

methods depending simultaneously on the quantities of interest at both f re  - 
quencies, o r  we can use the techniques of super-resolution in Hext 10 . 
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I - .  

I .  

4.5 Estimates of the Derivatives of the Noise Spectral Density Function 

When the frequencies of the signal components a r e  unknown it is 

necessary for us toestimate the derivatives of the quantities w e  have been 

considering. 

t ime series whose autocovariance function satisfies 

We assume w e  are dealing with a discrete parameter stationary 

00 

)vPR(v))  < 00 (4.38) 
d =  -00 

th for some positive integer p. For all integers q, 0 <q< p, the q spectral 

derivative is 

00 
(-i)‘At - ivw 

f y w )  = 2n  C v ~ R ( V )  e 
v’= -00 

th and the q generalized spectral derivative is defined to be 

(4 .39)  

(4 
VI= -00 

th Similarly the q 

estimate and of the spectral window are  defined as 

generalized spectral derivatives of the truncated spectra 

M’ 

and 
M’ 

40) 

(4.41) 

(4.42) 

W e  quote theorems for these derivatives which are analogous to Theorems 7 

and 9. 
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A%OM 

00 

1 
Theorem 1 0  Given N observations of the time se r i e s  

X(t) = C cos(wst + b) + Y(t) , t = A t , .  . . , N h t ,  where (i) C, w , and 4 
S 

arefixedwith os # 0 o r  n /At .  

series having zero  mean, autocovariance function R(v), v = O,At, 2At,.. . for 

which S ]  vR (v) I < 00 and spectral density function f(w) on [ - - a “1 Then V A t J  A t  * - 
for fixed nonnegative integers r and s, as N -, 00 

(ii) Y(t)  is a stationary and ergodic normal time 

and 

and similar results hold for generalized spectral derivatives on both sides of 

these equations. 

If instead of a single sine wave the signal has q components, we have 

as w e  should expect 
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-1 

+ -  47  K(r)(w ,A,M.)K(’)(w X,Mj)f2(A)dA + O(N-’) 
CL 1 6’ A 

A t  (4.46) 

and similar resul ts  hold for generalized spectral derivatives on both sides  of 

these equations. 

of Eqs. (4.23) and (4.24): provided p 2 2 (p = 2 for  Parzen, p = 1 for Tukey!) 

Using these resul ts  we may derive the following analogues 

logeM) (4.47) 4 p - 1 )  + k”(o )  f l ’ ( w  ) + O(M 
S 

and provided p 2 1 

where in each case w e  have assumed that 

7r 1 and - - a  >>- 
S M At S M 

1 
w >> - 

and where K(2) is the peak curvature factor of the window defined as 

and 

(4.48) 

(4.49) 

(4.50) 
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and 

(4 .51)  

1 1  
for Parzen ' s  kernel and - - - for Tukeyls. 1 

3 2n (6r 
,(2) = - 

I1 2 
W e  can now estimate C and f (a ) by regression techniques s imilar  

2 S 
to those of Sec. 4. 4. The resulting best  l inear unbiased estimates for  C 

and f"(w ) are  given by 
S 

(4 .52)  

with covariance matrix 

(4.53) 

where 

= I  M 
3,o 

& r n  M3 : 1 : J  (4 .54)  1 

(2J2) with and we have the approximate covariance matrix 

7~ -1 6 (2 )  (2)  2 -1 5 (2)  2 N M . . K  K C f(w ) + N  M . . I . .  f (w,) 
1J S 1J 1.l 

C ( 2 J 2 ) =  - 
A t  

i j  
(4 .55)  

1 1  

the estimates f (w ) and C 2  are functions of the t rue values 

and f(w ), which may be supplied approximately from the regression in 

(2,2) 
N s  N Through 

of C 
2 

S 
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. -  
2 Sec. 4. 4. We see then that we have two estimates for C and we should 

tes t  whether the difference between them is statistically significant taking 

into account the correlation between them. If the difference is significant 

we must reexamine the model we have taken for the time ser ies  and also the 

various approximations we have made. 

can combine the regressions of (4.23) and (4.47) and solve them simultaneously 

thus obtaining an estimate of the signal component, the noise component and 

the second derivative of the noise component. 

sion for  the covariance of a spectral estimate and a second derivative esti-  

mate. This isobtained easily from Theorem 10 and we do not go into details. 

If the difference is not significant we 

To do this we need an expres- 

To obtain a result  of the same kind a s  (4.47) for the first derivative in 

the case  of the simple mixed spectrum model we again use Theorem 10 to 

obtain the expression 

1 2  -2  
) 6., ) +: C O(M-') + O(M 

S 
(4.56) 

hence we have that approximately the first derivative of the noise spectral 

density is equal to the expected value of the first derivative of the truncated 

spectrdl estimate. The covariance of two estimates is giver- by 

(4.57) ] :J S 1J 

KJ Mi). f (1 1 (aS,Kj  M.)  = M.. I UijJ K)f2(w ) + O(M. .) 
N J 

By the usua l  regression analysis on (4.56) and (4.57) w e  obtain the best linear 

unbiased estimate for f (u ) as  
1 

S 

with variance 

[Mb( ))-' 

(4.58) 

(4.59) 

107 - ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 



where M 

results a r e  the same provided o is not too near o or o For  the 

special frequencies o 

is a column vector of ones. Fo r  the full mixed spectrum model the 
0 

S s -1 S+l .  
= 0 and o 

0 9 
= 7r/At (4.47) becomes 

(p-l)log M) 
] 1 2 (2)  3 I '  

(O,K,M) = - 5CoK M + k (o)fll(o) + O(M- e 
(4.60) 

(4.55) becomes 

= N M..K (2)K(2)C:f(o) + 2 N  -1 M . . I  5 (2) f 2 (0) A t  11 ij i j  
(4.61) 

i j  

(4.56) is unaltered. For  w = n / A t  the results a r e  the same with C replaced 

by C 

4.6 

q 0 

and the frequency o by n/At. 
9 

Estimates of the Signal Frequency 

Consider the simple mixed spectrum model 

1 
X(t) = c C O S ( 0  S t + +) + Y(t) t = At,  2At , . .  . , NAt (4.62) 

The expected spectral estimate is 

f(o, K, M) = ht 1 MI 
V 

cos vwk(G) R(v) 2n 
-Nf 

(4.63) 

Suppose that the derivative of the noise spectral  density function at a signal 

frequency w is known to have value D (for example D = 0), then because of 

(4.56) this will  be approximately equal to the derivative of (4.63). Thus our 
P 

* 
estimate o of o wi l l  be the solution of 

MI P P 
::: v 

D = - -  At 1 v sin v u  k ( z )  R(v) 
27r P 

the variance of which is given by 

* -1 -3 
P 

va r  [w ] = O(N M ) 

(4.64) 

(4.65) 
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which decreases rapidly as the bandwidth of the spectral  window decreases. 

This suggests we should use an estimate with the least bandwidth of any, namely 

the periodogram. W e  solve (4.64) as before and instead of (4.65) we obtain 

8 -4  2 * -4 .I. 

var[a"] - C  f (a ) N  
P 3 P 

(4.66) 

If the derivative of the noise spectral density is not known at the signal 

frequency, there are methods for estimating both of these quantities simultane - 
ously, however, we do not go into the matter here. It depends essentially on 

(4.56) which shows that i f  we graph f(l)(w,K, M.) i = 1,2, .  . . ,m against w, then 

all the curves should intersect in the point (a 

4. 7 Narrowband Signals in Noise 

N 1 

f'"(a,)). 
S J  

W e  shall now consider time ser ies  satisfying the following model 

q 

j=1  
X(t) = Z.(t) J + Y(t)  (4.67) 

where Y(t) is a noise process of the type considered above and the Z. ( . )  are 

mutually independent processes , which a r e  also independent of the Y(.) ser ies .  

Then 

J 

R(v) = 1 R.(v) J + R 0 (v) 
j = l  

v = 0, At,. . . (4.68) 

(4.69) 

The Z. ( . )  series replace the pure sine wavesignals and a re  considered to be 

slightly distorted (in amplitude and phase) sine wave signals whose spectra have 

pronounced peaks at the central frequencies a,. 

J 

J 
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For simplicity we car ry  out our analysis for the simple narrowband 

signal model 

X(t) = Z(t) + Y(t) (4.70) 

where Z(.) has central frequency os. We shall assume further that 

(4.71) 1 2  
R (v) = 5 C h(v) cos vu  S S 

where h(o) = 1 and h(v) is an even, slowly varying, integrable, nonnegative 

definite function. Note: h ( v )  2 1 corresponds to a pure sine wave signal. The 

more slowly h(v) + 0 as v + 00, the narrower wil l  be the bandwidth of the 

narrowband signal. 

we can define the bandwidth of the signal by analogy with the bandwidth of a 

spectral window by making h(v) correspond to k(-). Thus 

Since h(v) is a weight factor for the autocovariance (4.71) 

V 
M 

(4.72) 

Using the truncated spectral estimate fN(osJK, M) we wish to find estimates of 

fo(os), z C  By analysis of the type we have so often used before, we 1 2  and p,. 
arr ive a t  the expression 

M1 

(4.73) 

a When M is sufficiently small  h(M) is almost 1 
M s A t  M '  provided - << o << - - - 

unity so that (4.73) is approximately 
MI 

1 2 
4 o s  Z - K C  M + f  ( a )  

(4.74) 

(4.75) 
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1 2  
2 o s  from which estimates of - C 

paragraphs. Here f l  is much smaller than f l  so that the narrowband signal 

looks like a pure sine wave. On the other hand, i f  there a r e  sufficiently large 

and f (w ) by the regression methods of previous 

S 

values of M so that k(L) is almost unity while h(v) is small  (4.73) becomes 

approximately 
M 

00 

E[fN(wsJK, MI] 2: At - C 2 7 h(v) + f  (w ) - 1 - c2 +fo(o ) (4.76) 
S 6 s  87r 2 o s  

v'= -00 

1 2  from which we may estimate f l  since we already have estimates of - C 

f (w ). However, as M increases s o  does the variance of the estimates 

f (w , K, M) so that these estimates of @ must be regarded with caution. This 

occurs because in this case f l  is much smaller than f l  
tially estimating the spectral density function at the signal frequency. 

and 
S 2 

o s  

N s  S 
so that we a r e  essen- 

S 

4 . 8  Stagewise Autor egr essive Estimation 

The idea behind this is to attempt to find constants a l J . . . J a  for 
PJ 

some integer p, such that Eq. ( 3 . 2 5 )  holds. That is 

(4.77) 

where C(t) is a white noise process. We do this by a stagewise procedure, 

picking the constant a t  each step which reduces the variance of the estimate 

by the greatest  amount. 

the form (4 .77 )  and we may find in that case that our procedure does not 

terminate. However, i f  it does terminate, f rom Eq. ( 3 .  26) we obtain at 

once an analytic formula for the spectral density function f(o), and thus an 

approximation to the spectral density function of the process X(*).  Having 

determined the coefficients a 

s e r i e s  

The time ser ies  need not satisfy an expression of 

. . . , a we  must check to see i f  the residual 
1' P 
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(4.78) 

is in fact approximately a white noise process. 

a spectral analysis of it. 

To do this we must c a r r y  out 

Our stagewise procedure will be given below. It is based on the fact 

P 
that i f  X(*) satisfies (4.77) for each t in {At,. . . , dAt) then the a l r . . . , a  

satisfy the normal equations 

(4.79) 

In practice we cannot find R(v) but only the consistent estimate R (v). N 
a of the estimated normal equations 

1'"' P 
However, the solutions a 

P 2 R ~ ( V  - s b s I  = R#), VI = l ' . . . , P  (4.80) 
SI  =1 

a r e  consistent estimates of the solutions of (4.79). In order  to  keep the compu- 

tations within practical bounds we shall assume that w e  do not seek models with 

p greater  than 50. 

The steps of our computation are as follows. First we compute the 

estimated autocorrelation function 

for  v = At,. . . , p a t  and we form the statistic 

(4.81) 

(4.82) 
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2 If p1 is essentially zero  we go no farther since this means X(t) is approxi- 

mately independent of X(t - s), S' = 1,. . . , p. 

different f rom zero, we choose s such that 

2 
1 On the other hand, i f  p is 

1 

and w e  form 

X (t) = a 'X(t  - s ) 
S I  S I  1 

(4.83) 

(4.84) 

for all t in {(SI + l )A t , .  . . , NAt} , where  a 1 
normal equation 

is the solution of the estimated 
S' 1 

(4.85) 

Next w e  calculate the estimated autocorrelation function pN (v) of Xs (t) for 

v' = At,  . . . , pat,  and we form the statistic 
1 1 

(4.86) 

2 
2 If p 

approximate representation 

is not significantly different from zero  w e  ha l t  At this point we have the 

where ~ ( t )  has to  be analyzed to  see i f  it is approximately awhite noise process 

However, if p is significant, proceed to the second step.  W e  choose s 

such that 

2 
2 2 

(4.88) 
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and we form 

X (t) = a X(t - s) + as' X(t - s2) 
2 S' 1 s s  1 2  

where a , a a re  solutions of the normal equations 
s' SI 1 2 

(4.89) 

(4.90) 

Note that the a 

approximate r epr e s ent at ion 

in (4.89) is not the same as in  (4.84). This gives us  the 
SI 1 

X(t) = a X(t - sl) + as' X(t - s2) + c ( t )  (4.91) 
1 2 S 

and so on. A program which carries out this procedure is given in Fig. 6 .  
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Fig. 6 Procedure Select for Stagewise Autoregression (from Ref. 9). 
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5. CONCLUSIONS AND RECOMMENDATIONS 

We have presented in detail various techniques for the extraction 

of oscillator fluctuations, and for the estimation of the fluctuation spectra 

from the extracted fluctuations. 

study of a particular oscillator depends on the properties of the fluctuation 

spectrum and the limitations of the various extraction techniques. Adequate 

information on these two factors is not available a t  this time, hence it is not 

possible to recommend a single complete procedure that would reduce the 

problem of spectral measurement of oscillator fluctuations to routine opera- 

tions. 

The choice of techniques to be used for the 

It is clear that the next logical step in a continuing effort in this 

a rea  would be to judiciously utilize some of the techniques presented here to 

determine the limitations of the extraction techniques and the properties of 

some fluctuation spectra, and then modify the procedures to utilize the new 

information. 

this purpose, a s  follows. 

an automatic spectrum analyzer tc cbtain the fluctuation spectrum of the oscil- 

lator under test  down to about 1 0  Hz.  Also, measure the residual fluctuation 

spectrum with the loop in common mode, as explained in Sec. 2 . 1  above to 

ensure that the internal VCO fluctuations a r e  sufficiently small. Then, use 

the phase-detector technique (Fig. 2b) to extract the phase fluctuations for the 

high and medium regions. 

It is possible to recommend a complete test  program to achieve 

Use the phase-locked loop technique (Fig. 2c )with 

For  the high region, use an analog filter on the output with a cutoff 

frequency a t  about 50 Hz and a roll-off in excess of 12 dB/octave. 

and quantize the output every 5 ms,  and record the samples on punched-paper 

tape ( i f  the recorder  is fast enough) o r  on magnetic tape. Takeseveral  records,  

Sample 



each 10,000 samples o r  50 seconds long. For  the medium region, use an 

analog filter on the phase-detector output with a cutoff frequency at  about 

0.5 Hz and roll-off in excess of 12 dB/octave. Sample and quantize the 

output every 0 .5  second, and record the samples onpunched-paper tape. Take 

several  records, each 10,000 SaInpleS or 5, 000 seconds long. 

experiments, it is best to postpone taking data for the low region in order to 

avoid the added complexity of digital filtering. Also, take similar data for 

the residual fluctuations with phase detector operating in common mode, to 

ensure that the internal fluctuations a r e  sufficiently small. 

In the initial 

Next, use the computational procedure given inSec.4.1 to  estimate 

the spectra in  each region for each record. 

in the computations of Step 5. 

Eq. (4.2) on the computer should be considered, since this method is presently 

available in  the form of standard subroutines for some computers. Experi- 

ment with the computational parameters M, N, Q and observe the choice yieldini 

most consistent estimates. 

0.4, and Q/ N = 0.4. 

more, the estimates in the overlapping decade between two adjacent regions 

should agree closely. 

language of Secs. 3 and 4). If any a r e  suspected, then the more elaborate 

techniques of Secs. 4 .4-4.  7 may be used to estimate their frequencies and 

magnitudes. 

Use the Parzen  Kernel (Eq.(3.77)) 

The Cooley-Tukey method for implementing 

In particular, choose M/ N = 0.1 , 0. 2, 0. 3 and 

Similar records should yield close estimates. Further-  

Look for hidden periodicities (i. e. , "signals, " in the 
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NOTATION FOR PART I1 

time variables 

t im e between samples 
S 

integers 

duration of sample 

integer N' = N/At 

domain of X( a )  

trend or signal 

noise time ser ies  with zero mean 

components in m( e )  

number of components in m( .) 

amplitude, frequency, phase of f ( - )  

autocovariance function of X( - 1  (and Y( - ) )  

autocorrelation function of X ( . )  (and Y( .)) 
variable in domain of R( * and p( ) 

integers V I  = v/At 

domain of R ( - )  and p (  .) 

spectral  distribution function of X( - ) (and Y( ) )  

spectral  density function of X( a )  (and Y( 0 ) )  

normalized spectral density function of X( e )  (and Y( 

spectral  jump function of X( - ) 
variable in  domain of F( - ) , f (  ) , +( - ) and J( * ) 

autoregressive coefficient 

order  of autoregressive scheme 

white noise process 

t t' = - 
A t  ' A t  

SI = - 

k 

119 
- ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 



A 
K 

VBW( * ) 

truncation point in domain of R(. ) and p( a )  

integer M.' = M./At 

expectation operator 

variance operator 

covariance operator 

estimate of m( . )  based on sample of duration N 

estimate of f ( . )  based on sample of duration N 

estimate of + ( - >  based on sample of duration N 

truncated spectral estimate based on sample of duration N 

normalized truncated spectral  estimate based on sample of duration 
N 

1 1 

estimate of R( - ) based on sample of duration N 

unbiased estimate of R( . )  based on sample of duration N 

unbiased estimate of p( - )  based on sample of, duration N 

number of subdivisions of 0 
spectral window 

covariance window 

generalized function corresponding to f 

bandwidth 

window generating function 

spectral window 

variable in domain of K( .  . .) 

domain of K(.  . .)  

peak height factor 

variance -bandwidth factor 

characteristic exponent 

characteristic coefficient 

generalized spectral  q derivative th 
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1 -  

. d  

I -  

-. 

truncation ratio 'ij 
M. mean truncation point 

f ( . , . , .) 1j 
expected spectral  estimate 

c approximate covariance matrix, element of i j  
(', '1 element of (1,1) 

approximate covariance matrix, cii G(1, 1) 
Y 

(2 ,2)  approximate covariance matrix, c(2, 2, element of (282) 
11 c 

Y 

['(. , . , .) generalized spectral q th derivative of truncated spectral estimate 

K [SI (. , . , .) generalized spectral q th derivative of spectral  window 
f N  

th 

(r) th 

. , . , . )r derivative of truncated spectral estimate (r)( 
fN 

K (. , . ,.) r derivative of spectral window 

m number of spectral estimates 

peak curvature factor 

integrals 

m x 1 vector of ones 
0 

M 

M m x 2 matrix 
1,o 

D 

Z .( - ), Z( ) 
J 

R.(.) autocovarianc e of Z. ( ) 
J J 

R ( a )  

f . ( . )  
J J 

value of derivative of noise spectral  density 

narrowband signals 

autocovariance of Y( - ) in  presence of narrowband signal 

spectral  density function of Z.( .) 
0 
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spectral density function of Y(*) in presence of narrowband signal 

bandwidth of narrowband signal 

autor egressive statistics 

first- o r  second-order autoregressive models 
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